Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Fourfold Action of Surfactants with Superacid Head Groups: Polyoxometalate-Silicone Nanocomposites as Promising Candidates for Proton-Conducting Materials.

Alexander Klaiber, Steve Landsmann, Tobias Löffler, and Sebastian Polarz

New Journal of Chemistry, RSC

Electronic Supplementary Information.

ESI-1. Additional information for the surfactant with heteropolyacid head $[(C_{16}H_{33}Si)_2PW_{11}O_{39}](H)_3 (1).$

(a) ¹H NMR data.

(*) solvent signals.

(b) ³¹P NMR data.

(d) ¹⁸³W NMR data

(c) ²⁹Si-NMR data

(e) Polarization microscopy of a LCC formed with (1) in water.

(f) Schematic image of the POM-surfactant packing in the lamellar LCC phase.

(g) Particle size distribution curve of a micellar solution of (1) obtained by DLS.

ESI-2. Additional information for the emulsion formed with TSIL, water and (1) as an emulsifier.

(a) Photographic image of the emulsion after 5 weeks.

ESI-3. Additional data for the solid PDMS-POM-surfactant nanohybrid.

(a) Photographic image of the PDMS-POM-surfactant nanohybrid after freeze drying.

(b) N_2 physisorption isotherm of the of the PDMS-POM-surfactant nanohybrid after freeze drying.

squares \cong adsorption branch circles \cong desorption branch

(c) Enlarged SEM picture showing the partial fusion of PDMS/POM-surfactant hybrid particles inside the porous network.

scalebar = 500 nm.

(d) TGA data (black graph) in air and first derivative of TGA data (grey graph).

Step (i): Removal of residual solvent.

Step (ii): Conversion of organosilsesquioxane species to SiO₂

Step (iii): Conversion of POM-surfactant to WO₃; sublimation of resulting P₂O₅

We would like to highlight the unique signals, proving the presence of all of the three starting materials. Those are:

- the peak at 1009 cm⁻¹ (IR) indicating the P-O vibration of the PW₁₁O₃₉-Cluster
- the very prominent symmetrical C-H-deformation of the TSIL Si-CH₃ groups at 1259 cm⁻¹ (IR)
- typical phenyl-vibrations at 1595 and 1569 cm⁻¹ in the Raman spectrum indicating the presence of PhSiOEt_{3.}

<u>ESI-4.</u>

Additional data for material obtained after calcination of the PDMS-POM-surfactant nanohybrid.

(a) PXRD analysis

The reference pattern of tetragonal WO_3 is shown as grey bars. In addition, one sees a very broad signal at 22°, which is typical for substantial amounts of amorphous SiO₂ present in the sample.

(b) SEM image showing the structure of the WO_3 -SiO₂ material after calcination of the PDMS-POM-surfactant nanohybrid.

<u>ESI-5.</u>

Synthesis of PDMS/POM materials:

The synthesis of $H_3[PW_{11}O_{40}(SiC_{16}H_{33})_2]$ (H-PW11C16) was performed according to known literature.²⁰

To 100 mg (0.031 mmol) of H-PW11C16 in 16 ml of destilled water was added octamethylcyclotetrasiloxane (TSIL) (1.7 mmol) and $PhSi(OEt)_3$ (1.5 mmol) as crosslinker. The emulsion was generated by sonification with a Bandelin-Sonoplus TT13/F2 (65%, 5 mins). After stirring the emulsion for 20 h at 80° C the material was obtained by freeze-drying the reaction mixture.

For the synthesis of the H⁺:Si 1:20 material 0.37 mmol of TSIL and 0.31 mmol of crosslinker were used.