Electronic Supplementary Information (ESI)

Dioxidomolybdenum(VI) complexes with isoniazid-related

hydrazones: solution-based, mechanochemical and UV-light assisted

deprotonation

Višnja Vrdoljak, * Biserka Prugovečki, Ivana Pulić, Marko Cigler, Dora Sviben, Jelena Parlov Vuković, Predrag Novak, Dubravka Matković-Čalogović and Marina Cindrić

* Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a,10000 Zagreb, Croatia

Contents:

Powder X-ray diffraction patterns	2
NMR spectroscopy	4
Crystallographic studies	7
Ligands H_2L^R	14

(a)

(b)

(c)

Fig. S1 Photos of (a) 1, (b) 2 and (c) 3.

Powder X-ray diffraction patterns

Fig. S2 PXRD patterns of **1** (a and b); **4** (c-f). The colored lines indicate patterns obtained by powder diffraction ((c) sample obtained by method A, (d) sample obtained by method B and (e) sample obtained by method C)), while the black lines indicate patterns calculated from the X-ray single-crystal structures of the corresponding compounds.

Fig. S3 PXRD patterns of **2** (a and b); **5** (c-f). The colored lines indicate patterns obtained by powder diffraction ((c) sample obtained by *method* A, (d) sample obtained by *method* B and (e) sample obtained by *method* C)), while the black lines indicate patterns calculated from the X-ray single-crystal structures of the corresponding compounds.

NMR spectroscopy

Atom	[MoO ₂ (HL ^{SIH})(MeOH)]Cl (1) δ / ppm (DMSO)		[MoO ₂ (L ^{SIH})(MeOH)] (4) δ / ppm (DMSO)		
	1H	¹³ C	$^{1}\mathrm{H}$	¹³ C	
1	9.07	158.90	9.03	157.67	
2	-	-			
3	-	-			
4	-	166.36		167.05	
5	-	141.61		137.42	
6, 10	8.14	123.57	7.88	121.54	
7, 9	8.89	147.56	8.76	150.61	
8	3.95	-	-		
11	-	120.46		120.08	
12	7.81	135.34	7.78	134.70	
13	7.13	122.41	7.13	121.85	
14	7.59	136.26	7.57	135.51	
15	6.99	116.93	6.98	118.66	
16	-	160.05		159.51	
17	-	-			

Table S1. ¹H and ¹³C chemical shifts (ppm) of compounds 1 and 4.

* Signals belonging to MeOH were also detected in ¹H NMR spectra in DMSO solutions of the mononuclear complexes 1 and 4.

Scheme S1 The structural formula of H_2L^{SIH} with the NMR numbering scheme

Atom	[MoO ₂ (HL ^{NIH})(MeOH)]Cl (2)		[MoO ₂ (L ^{NIH})(MeOH)] (5)		
	<i>δ</i> / ppm		<i>δ</i> / ppm		
	$^{1}\mathrm{H}$	¹³ C	$^{1}\mathrm{H}$	¹³ C	
1	9.86	154.94	9.82	154.20	
2	-	-			
3	-	-			
4	-	165.89		166.82	
5	-	140.33		137.86	
6, 10	8.18	123.23	7.93	121.97	
7, 9	8.94	148.22	8.79	151.07	
8	4.66	-			
11	-	111.95		111.97	
12	-	132.94		132.91	
13	-	129.35		129.32	
14	7.99	137.29	8.17	136.97	
15	7.24	120.77	7.23	120.77	
16	-	161.48		161.28	
17	-	-			
18	8.19	129.54	7.97	129.49	
19	7.54	125.47	7.52	125.40	
20	7.69	129.25	7.68	129.18	
21	8.55	122.19	8.54	122.18	

 Table S2. ¹H and ¹³C chemical shifts (ppm) of compounds 2 and 5.

* Signals belonging to MeOH were also detected in ¹H NMR spectra in dmso solutions of the mononuclear complexes 2 and 5.

Scheme S2 The structural formula of $H_2 L^{NIH}$ with the NMR numbering scheme

Atom	[MoO ₂ (HL ^{Et2NSIH})(MeOH)]Cl (3) δ / ppm		$[MoO_2(L^{Et2NSIH})]_n (6)$ δ / ppm		
	¹ H	¹³ C	¹ H	¹³ C	
1	8.72	157.57	8.69	156.72	
2	-	-			
3	-	-			
4	-	162.54		164.26	
5	-	143.73		138.31	
6, 10	8.16; 8.19	123.69	7.81	121.90	
7,9	8.88; 8.90	145.73	8.71	150.88	
8	3.17	-			
11	-	108.74		108.70	
12	7.48; 7.51	136.78	7.45	136.42	
13	6.50	107.15	6.46	106.81	
14	-	154.47		154.07	
15	6.19	99.59	6.16	99.55	
16	-	162.24		162.00	
17	-	-			
18	3.45	44.74	3.43	44.64	
19	1.13	13.01	1.12	13.01	

Table S3. ¹H and ¹³C chemical shifts (ppm) of compounds 3 and 6

* Signals belonging to MeOH were also detected in ¹H NMR spectra in dmso solutions of the mononuclear complexes 3.

Scheme S3 The structural formula of $H_2 L^{Et2NSIH}$ with the NMR numbering scheme

Crystallographic studies

Table S4. Angle between the pyridyl and the phenyl (compound 1, 3, 6, 1a, $3a \cdot H_2O$) / the naphtyl moieties (compound 2, 5, 2a), φ / \circ and angle between the five- and six-membered chelate rings, ψ / \circ for compounds 1, 2, 3, 5, 6, 1a, 2a, $3a \cdot H_2O$

	<i>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </i>	$\psi/^{\circ}$
1	7.85(9)	5.73(6)
2	8.47(9)	8.07(8)
3	4.57(15)	5.20(10)
5	6.92(10)	8.32(9)
6	3.85(12)	5.99(3)
1a	7.91(14)	7.60(9)
2a	5.98(10)	7.27(10)
3a∙H ₂ O	4.20(10)	6.95(7)

Ja ¹ 1 ₂ U					
	D–H…A	D-H (Å)	H…A (Å)	D…A (Å)	D–H···A(°)
	O5_H05…C1	0.72(2)	2.38(2)	3 0936(16)	171(3)
1	N3–H3…Cla	0.86	2.16	3.0199(16)	174
	C5–H5···Cl ^b	0.93	2.78	3.566(2)	143
	C6–H6…O3°	0.93	2.51	3.057(2)	118
	C7–H7…O1	0.93	2.39	2.716(2)	100
	C7–H7…O4 ^d	0.93	2.38	3.036(2)	127
	N3-H3···Cle	0.80(3)	2.24(3)	3.017(2)	166(2)
2	O5-H05…Cl	0.73(3)	2.37(3)	3.0770(19)	165(3)
	C5-H5···Cl ^f	0.93	2.73	3.609(3)	157
	С7-Н7…О1	0.91(3)	2.38(3)	2.764(3)	105(2)
	C18-H18CO3g	0.96	2.60	3.014(3)	106
	N3-H3···Cl	0.83(4)	2.17(4)	2.988(3)	169(4)
3	O5-H05…Clh	0.67(4)	2.40(4)	3.057(3)	165(3)
	C1-H1···O3 ⁱ	0.93(4)	2.56(4)	3.269(4)	134(3)
	C4-H4…N2	0.82(4)	2.54(4)	2.834(4)	103(3)
	C5-H5-04 ^g	0.95(4)	2.54(4)	3.131(4)	120(3)
	O5-H05…N3 ^j	0.89(2)	1.84(2)	2.709(3)	164(3)
	C12-H12···O4 ⁱ	0.93	2.52	3.227(3)	133
5	$C13-H13\cdots O2^{1}$	0.93	2.54	3.468(3)	173
	C14-H14···O3 ⁿ	0.93	2.58	3.409(3)	149
	С16-Н16-О4к	0.93	2.49	3.377(3)	159
	$CI-HI\cdots O3^{g}$	0.93(3)	2.54(3)	3.355(3)	146(2)
6	$C1-H1\cdots O3^{T}$	0.93(3)	2.47(3)	3.027(3)	119(2)
0	$C4 - H4 \cdots N2^{m}$	0.90(3)	2.45(3)	2.764(3)	101(2) 118(2)
	05 H05 A Cln	0.89(3)	$\frac{2.30(3)}{2.41(2)}$	2.888(4)	118(3)
1	$O_5 - H_0 SA \cdots CI^n$	0.77(3)	2.41(3)	3.1/2(2) 2.122(2)	1/4(4) 170(4)
18	$O_2 - H_0 2B \cdots C_1$	0.83(4)	2.32(4)	3.133(2)	170(4)
	N3-H3···CI ^p	0.77(4)	2.29(4)	3.033(3)	170(4)
	$CI-HI$ ···· $O4^{q}$	0.93	2.55	3.469(3)	1/1
	CS-HS···Cl ^o	0.93	2.00	3.300(3)	103
	C6-H6Cl	0.93	2.74	3.312(3)	141
	C13-H13-03*	0.93	2.51	$\frac{3.2/1(4)}{2.044(2)}$	140
2	O5-H05A···Cl	0.80(4)	2.26(4)	3.044(3)	168(4)
2a	O5-H05B···Cl	0.79(3)	2.33(4)	3.0/3(3)	157(3)
	N3-H3···Cl ^u	0.86	2.79	3.394(2)	129
	N3-H3···Clv	0.86	2.48	3.123(2)	132
	C5−H5…Cl ^v	0.93	2.72	3.250(3)	117
	C17–H17…CI ^w	0.93	2.81	3.582(3)	141
	O6–H06A…N2 ^x	0.77(3)	2.25(3)	3.006(2)	168(3)
	O6–H06B···Clt	0.81(3)	2.37(3)	3.1729(18)	175(3)
3a∙H ₂ O	N3–H3···Cl ^y	0.86	2.22	3.0608(16)	165
	O5–H05A…O6	0.84(3)	1.84(3)	2.666(2)	172(3)
	O5–H05B…Cl ^z	0.68(3)	2.42(3)	3.0814(16)	166(2)
	С7-Н7…О1	0.93	2.46	2.772(2)	100
	C10-H10····O ^{a1}	0.93	2.42	3.277(2)	153
	C16–H16B…O3 ^x	0.97	2.52	3.159(3)	123

Table S5 Geometry of intermolecular hydrogen bonds (Å, °) for 1, 2, 3, 5, 6, 1a, 2a and 3a·H₂O

 ${}^{a_1+x,y,1+z;\ b_1-x,1-y,2-z;\ c_x,y,1+z;\ d_1/2+x,1/2-y,1/2+z;\ c_x,y,-1+z;\ f_1-x,1-y,-z;\ g_-1+x,y,z;\ h_1-x,-y,-z;\ i_1-x,-y,1-z;\ j_3/4-x,3/4+y,3/4+z;\ k_-1/4+x,1/4-y,-1/4+z;\ l_-x,-y,1-z;\ m_-1/2-x,-1/2+y,1/2-z;\ n_1-x,1/2+y,3/2-z;\ o_-1+x,1+y,z;\ p_-1+x,3/2-y,1/2+z;\ q_x,3/2-y,1/2+z;\ r_1-x,3/2+y,3/2-z;\ s_1-x,-1/2+y,3/2-z;\ i_1-x,1-y,1-z;\ u_3/2-x,1/2+y,3/2-z;\ v_-1/2+x,3/2-y,1/2+z;\ w_-1/2+x,1/2-y,1/2+z;\ x_x,3/2-y,-1/2+z;\ y_1+x,1+y,1+z;\ z_1+x,3/2-y,1/2+z;\ u_x,3/2-y,1/2+z;\ w_-1/2+x,3/2-y,1/2+z;\ w_-1/2+x,3/2+y,1/2+z;\ w_-1/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3/2+x,3$

	CgX	CgY	CgX–CgY (Å)
1	Cg3 (N3, C3–C7)	Cg4 (C8–C13)	3.6597(11) ⁱ
			3.8484(11) ⁱⁱ
2	Cg3 (N3, C3–C7)	Cg4 (C8–C13)	3.7770(14) ⁱⁱⁱ
	Cg3 (N3, C3–C7)	Cg5 (C10, C11, C14–C17)	3.6530(15) ⁱⁱⁱ
3	Cg3 (N3, C3–C7)	Cg4 (C8–C13)	3.7879(19) ^{iv}
	Cg3 (N3, C3–C7)	Cg3 (N3, C3–C7)	3.8898(18) ^v
5	Cg3 (N3, C3-C7)	Cg4 (C8-C13)	3.9168(14) ^{vi}
	Cg3 (N3, C3-C7)	Cg5 (C10, C11, C14–C17)	3.7563(15) ^{vi}
2a	Cg3 (N3, C3-C7)	Cg4 (C8-C13)	3.5855(15) ^{vii}
	Cg3 (N3, C3-C7)	Cg5 (C10, C11, C14–C17)	3.5529(16) ^{vii}

Table S6. $\pi \cdots \pi$ interactions in crystal structure of compounds 1, 2, 3, 5 and 2a

ⁱx, y, 1+z, ⁱⁱ1+x, y, 1+z, ⁱⁱⁱ2-x, 1-y, z, ^{iv}1-x, -y, 1-z, ^v1-x, -y, -z, ^{vi}1-x, -y, -z, ^{vii}1-x, 1-y, 2-z

Fig. S4. Packing arrangement of the complex 1 displayed in the unit cell. Hydrogen bonds $N3-H3\cdots Cl[1+x,y,1+z]$ and O5-H05 \cdots Cl are shown as blue dashed lines.

Fig. S5. Packing arrangement of the complex 2 displayed in the unit cell. Hydrogen bonds $N3-H3\cdots Cl[x,y,1-z]$ and $O5-H05\cdots Cl$ are shown as blue dashed lines.

Fig. S6 Packing arrangement of the complex **3** displayed in the unit cell. Hydrogen bonds $N3-H3\cdots Cl[x,y,1-z]$ and $O5-H05\cdots Cl$ are shown as blue dashed lines.

Fig. S7 Packing arrangement of molecules of the complex 5 displayed in the unit cell. Hydrogen bonds O5–H05…N3 [1/4-x,1/4+y,3/4+z] are shown as blue dashed lines.

Fig. S8 Packing arrangement of molecules of the complex 6 displayed in the unit cell.

Fig. S9 Packing arrangement of the complex 1a displayed in the unit cell. Hydrogen bonds O5-H05A···Cl[1-x,1/2+y], N3-H3···Cl[-1+x,3/2-y] and O5-H05B···Cl[-1+x,1+y,z] are shown as blue dashed lines.

Fig. S10 Packing arrangement of the complex **2a** displayed in the unit cell. Hydrogen bonds O5–H05A···Cl, O5–H05B···Cl[1-x,1-y,1-z], N3–H3···Cl[3/2-x,1/2+y,3/2-z] and N3–H3···Cl[-1/2+x,3/2-y,1/2+z] are shown as blue dashed lines.

Fig. S11 Packing arrangement of the complex $3a \cdot H_2O$ displayed in the unit cell. Hydrogen bonds O6–H06A···N2[x,3/2-y,-1/2+z], O6–H06B···Cl[1-x,1-y,1-z], N3–H3···Cl[1+x,1+y,1+z], O5–H05A···O6 and O5–H05B···Cl[1+x,3/2-y,1/2+z] are shown as blue dashed lines.

Ligands H_2L^R

H₂L^{SIH} ligand. Selected IR data (cm⁻¹): 3180 (N–H), 1685 (C=O), 1624 (C=N)py, 1601 (C=N), 1566 (C–O_{phenol}). DSC melting peak: onset 242.0 °C (179.4 J/g).

H₂L^{NIH} ligand. Selected IR data (cm⁻¹): 3216 (N–H), 1679 (C=O), 1623 (C=N)py, 1603 (C=N), 1575 (C–O_{phenol}). DSC melting peak: onset 261.0 °C (105.6 J/g).

H₂L^{Et2NSIH} ligand. Selected IR data (cm⁻¹): 3163 (N–H), 1678 (C=O), 1630 (C=N)py, 1597 (C=N), 1556 (C–O_{phenol}). DSC melting peak: onset 226.8 °C (123.65 J/g).