Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Planar and distorted Indigo as core motif in novel chromophoric liquid crystals

Jan H. Porada, Jörg-M. Neudörfl and Dirk Blunk*

Submitted to New Journal of Chemistry 2015

Universität zu Köln, Institute of Organic Chemistry, Greinstr. 4, 50939 Köln, Germany. e-Mail: d.blunk@uni-koeln.de; Fax:+49-221-470 3064; Tel: +49-221-470 5213

Syntheses and Analytics:	3
Instruments:	
Syntheses of the Boronic Acids:	4
4-Bromo-3-fluorophenol (26)	4
1-Bromo-2-fluoro-4-dodecyloxybenzene (27)	4
2-Fluoro-4-dodecyloxyphenyl boronic acid (6)	5
1-Bromo-4-dodecyloxy-2-methylbenzene (28)	6
4-Dodeclyloxy-2-methylphenyl boronic acid (7)	6
Syntheses of the Isatin Derivatives (Type II):	7
General procedure A:	7
4-(4-(Dodecyloxy)phenyl)indolin-2,3-dione (29)	7
5-(4-Dodecyloxyphenyl)indolin-2,3-dione (30)	8
5-(4-Dodecylphenyl)indolin-2,3-dione (31)	9
5-(2-Fluoro-4-(dodecyloxy)phenyl)indolin-2,3-dione (32)	9
5-(4-(Dodecyloxy)-2-methylphenyl)indolin-2,3-dione (33)	10
6-(4-(Dodecyloxy)phenyl)indolin-2,3-dione (34)	11
6-(4-Dodecylphenyl)indolin-2,3-dione (35)	12
6-(2-Fluor-4-(dodecyloxy)phenyl)indolin-2,3-dione (36)	12
6-(4-(Dodecyloxy)-2-methylphenyl)indolin-2,3-dione (37)	13
7-(4-(Dodecyloxy)phenyl)indolin-2,3-dione (38)	14
Syntheses of the N,N'-unsubstituted Indigo Derivatives (Type III):	15
General procedure B:	15
4,4'-Bis-(4-(dodecyloxy)phenyl)indigo (8)	15
5,5'-Bis-(4-(dodecyloxy)phenyl)indigo (9)	16
5,5'-Bis-(4-dodecylphenyl)indigo (14)	16
5,5'-Bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (15)	16
5,5'-Bis-(4-(dodecyloxy)-2-methylphenyl)indigo (16)	17
6,6'-Bis-(4-(dodecyloxy)phenyl)indigo (10)	17
6,6´-Bis-(4-dodecylphenyl)indigo (20)	17
6,6'-Bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (21)	18
6,6'-Bis-(4-(dodecyloxy)-2-methylphenyl)indigo (22)	18
7,7'-Bis-(4-(dodecyloxy)phenyl)indigo (11)	18
Syntheses of the N,N'-diacetylated Indigo Derivates (Type IV):	19
	1

r	
N,N'-Diacetyl-5,5'-bis-(4-(dodecyloxy)phenyl)indigo (12)	
N,N'-Diacetyl-5,5'-bis-(4-dodecylphenyl)indigo (17)	
N,N'-Diacetyl-5,5'-bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (18)	
N,N'-Diacetyl-5,5'-bis-(4-(dodecyloxy)-2-methylphenyl)indigo (19)	
N,N'-Diacetyl-6,6'-bis-(4-(dodecyloxy)phenyl)indigo (13)	
N,N'-Diacetyl-6,6'-bis-(4-dodecylphenyl)indigo (23)	
N,N'-Diacetyl-6,6'-bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (24)	
N,N'-Diacetyl-6,6'-bis-(4-(dodecyloxy)-2-methylphenyl)indigo (25)	
UV-Vis Spectra	
UV-Vis Spectra Calculation of the Order Parameter S:	
UV-Vis Spectra Calculation of the Order Parameter S: Quantum mechanical Calculations (DFT):	
UV-Vis Spectra Calculation of the Order Parameter S: Quantum mechanical Calculations (DFT): Calculation of the p-Orbital Alignment Vectors:	
UV-Vis Spectra Calculation of the Order Parameter S: Quantum mechanical Calculations (DFT): Calculation of the p-Orbital Alignment Vectors: Complete list of determined angles and distances:	

Syntheses and Analytics:

Instruments:

IR: Infrared spectra were obtained using a *Perkin-Elmer* Paragon 1000 FTIR spectrometer and are given in cm⁻¹ units. All samples were measured as ATR on a ZnSe crystal. Signals are characterized by b, broad; w, weak; m, medium; s, strong.

¹**H-NMR:** The ¹H-NMR spectra were recorded on *Bruker* AC 300, *Bruker* DPX 300 spectrometers operating at 300 MHz or on a *Bruker* DRX 500 spectrometer operating at 500 MHz. Chemical shifts are reported as δ in ppm and the coupling constant, J,in Hz units. In all spectra solvent peaks were used as internal standard. As solvent DMSO-d6 (δ = 2.49 ppm) or CDCl₃ (δ = 7.24 ppm) were used. Splitting patterns are designated as follows: s, singlet; d, doublet; t,triplet; q, quartet; m, multiplet; br, broad.

¹³C-NMR: The ¹³C-NMR spectra were recorded either on a *Bruker* AC 300 spectrometer operating at 75 MHz or on *Bruker* DRX 500 spectrometer instrument operating at 125 MHz.

¹⁹**F-NMR:** The ¹⁹F-NMR spectra were recorded either on a *Bruker* Avance II 300 spectrometer operating at 282 MHz.

LR-MS: Finnigan MAT Incos 50 Galaxy System.

HR-MS: Finnigan MAT 900S. EI, 70eV, Peakmatching using Polyfluorocerosine.

Elemental analysis: CHN-combustion analyses were measured using an Elementar Vario EL Instrument.

WAXS: Magnetic field (1.5 T) oriented samples in home made flatfilm camera, freestanding in an hole sampleholder. Temperature controller from *Lakeshore*. Two dimensional diffraction patterns detected on *Fuji* BAS SR 3000 imaging plates and processed with the X-Ray 1.0 software from the Université Mons Hainaut.

Single Crystal X-Ray: The single crystal X-ray analysis for compound **12** was done on a Kappa CCD four-circle diffractometer from *Nonius* with a Mo X-ray source. Compound **23** was measured on an *Agilent* Super-Nova with a Cu X-ray source. The structures were resolved and refined using the SHELX-97 software package. Visual representation, the introduction of dummy atoms and lines as well as the determination of distances and angles was performed using the Diamond 3.0 software of *Crystal Impact*.

Syntheses of the Boronic Acids:

4-Bromo-3-fluorophenol (26)

80 mmol (9.00 g) of 3-fluorophenol have been converted with 81 mmol (12.96 g) bromine according to literature.^[1] After recrystallisation from petrolether (40-60 °C) 4.01 g (19%) **26** have been yielded as

colourless solid. $R_f=0.38$ (SiO₂, *c*Hex/EtOAc 3:1); m.p. Cr 71°C I (PE); ¹H NMR (300 MHz, CDCl₃, 25°C): $\delta=7.34$ (m, 1H; 5-H), 6.64 (dd, ³*J*_{H,F}=9.7 Hz, ⁴*J*=2.8 Hz, 1H; 2-H), 6.52 (ddd, ³*J*=8.7 Hz, ⁴*J*=2.8 Hz, ⁵*J*_{H,F}=1.0 Hz, 1H; 6-H), 5.21 ppm (s, 1H; OH); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): $\delta=159.38$ (s, ¹*J*_{C,F}=246.8 Hz; C-3), 155.92 (s, ³*J*_{C,F}=10.2 Hz; C-1), 133.59 (d; C-5), 112.63 (d, ⁴*J*_{C,F}=2.9 Hz; C-6), 104.51 (d, ²*J*_{C,F}=25.2 Hz; C-2), 99.59 ppm (s, ²*J*_{C,F}=21.1 Hz; C-4); ¹⁹F NMR (282.2 MHz, CDCl₃, 25°C): $\delta=-105.04$ ppm (m; 3-F); IR (ATR): $\tilde{\nu}=3334$ (bw), 1595 (s), 1484 (s), 1442 (s), 1296 (s), 1238 (m), 1215 (m), 1148 (s), 1123 (s), 1042 (m), 961 (s), 839 (m), 799 (m), 735 (m), 607 cm⁻¹ (s); MS (EI, 70 eV) m/z (%): 192 (100) [*M*⁺ for ⁸¹Br], 190 (100) [*M*⁺ for ⁷⁹Br], 111 (17) [*M*⁺-Br], 83 (80), 57 (28).

1-Bromo-2-fluoro-4-dodecyloxybenzene (27)

16 mmol (3.07 g) 4-bromo-3-fluorophenol (**26**), 17 mmol bromododecane (4.00 g) and 20 mmol (0.80 g) NaOH have been dissolved in 15 ml DMSO and heated to 100 °C for 12

hours. After cooling to room temperature the solution has been extracted with MTBE and washed three times with water and dried over magnesium sulphate. The solvent was removed under reduced pressure and the crude product was purified chromatographically (silica gel, *c*hex) yielding 5.57 g (97%) **27** as colourless oil. R_f=0.75 (SiO₂, *c*Hex/EtOAc 3:1); n_D²⁰ 1.5013; ¹H NMR (300 MHz, CDCl₃, 25°C): δ =7.36 (m, 1H; 6-H), 6.66 (dd, ³*J*_{H,F}=10.5 Hz, ⁴*J*=2.8 Hz, 1H; 3-H), 6.57 (ddd, ³*J*=8.8 Hz, ⁴*J*=2.8 Hz, ⁵*J*_{H,F}=0.9 Hz, 1H; 6-H), 3.89 (t ³*J*=6.5 Hz, 2H; α-CH₂); 1.75 (m, 2H; β-CH₂), 1.48-1.18 (m, 18H; CH₂), 0.87 ppm (t, ³*J*=6.6 Hz, 3H; CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ =159.75 (s, ³*J*_{C,F}=9.8 Hz; C-4), 159.43 (s, ¹*J*_{C,F}=246.0 Hz; C-2), 133.19 (d; C-6), 111.82 (d, ⁴*J*_{C,F}=2.5 Hz; C-5), 103.25 (d, ²*J*_{C,F}=25.4 Hz; C-3), 98.88 (s, ²*J*_{C,F}=21.2 Hz; C-1), 68.60 (t; α-CH₂), 31.91, 29.63, 29.57, 29.34 (4 × t; CH₂), 29.01 (t; β-CH₂), 25.93 (t; γ-

CH₂), 22.68 (t; CH₂), 14.10 ppm (q; CH₃); ¹⁹F NMR (282.2 MHz, CDCl₃, 25°C): δ =-105.50 ppm (m; 2-F); IR (ATR): $\tilde{\nu}$ =2920 (s), 2850 (s), 1603 (m), 1582 (m), 1487 (s), 1465 (m), 1320 (m), 1290 (m), 1260 (m), 1165 (s), 1143 (m), 1051 (w), 1016 (w), 830 (m), 790 (w), 718 (w), 641 cm⁻¹ (w); MS (EI, 70 eV) m/z (%): 360 (15) [*M*⁺ for ⁸¹Br], 358 (16) [M⁺ for ⁷⁹Br], 280 (4) [*M*⁺-Br], 192 (100) [*M*⁺-C₁₂H₂₅ for ⁸¹Br], 190 (100) [*M*⁺-C₁₂H₂₅ for ⁷⁹Br], 112 (19), 97 (7), 83 (16), 69 (19), 57 (37), 43 (39).

2-Fluoro-4-dodecyloxyphenyl boronic acid (6)

7.7 mmol (2.79 g) of 1-bromo-2-fluoro-4dodecyloxybenzene (27) were dissolved in 35 ml dry THF and cooled to -78 °C. 7.8 mmol (3.1 ml) of a 2.5 molar *n*BuLi solution were added slowly over 90 minutes.

30 minutes after complete addition 21.0 mmol (2.0 ml) trimethylborate were added rapidly and the solution was allowed to reach room temperature. Subsequently 50 ml 2 molar HCl were added and THF was removed under reduced pressure. After addition of ethyl acetate the organic phase was washed twice with water and once with brine and dried over MgSO₄. The solvent was evaporated and crude product recrystallized from petrolether (40-60 °C) yielding 1.67 g (63%) 2-fluoro-4-dodecyloxyphenyl boronic acid (6) as colourless solid. R_f=0.25 (SiO₂, *c*Hex/EtOAc 3:1); m.p. Cr 92 °C I (PE); ¹H NMR (300 MHz, CDCl₃, 25°C): δ=7.70 (m, 1H; 6-H), 6.71 (dd, ${}^{3}J=8.4$ Hz, ${}^{4}J=2.2$ Hz, 1H; 5-H), 6.53 (dd, ${}^{3}J_{HF}=13.0$ Hz, ${}^{4}J=2.1$ Hz, 1H; 3-H), 3.95 (t ${}^{3}J=6.5$ Hz, 2H; α -CH₂); 1.77 (m, 2H; β -CH₂), 1.48-1.18 (m, 18H; CH₂), 0.86 ppm (t, ${}^{3}J=6.6$ Hz, 3H; CH₃); ${}^{13}C$ NMR (75.5 MHz, CDCl₃, 25°C); $\delta=169.04$ (s, ${}^{1}J_{CF}$ =255.1 Hz; C-2), 163.43 (s; C-4), 137.47 (d, ${}^{3}J_{CF}$ =9.7 Hz; C-6), 111.02 (d; C-5), 101.31 (d, ${}^{2}J_{CF}$ =29.5 Hz; C-3), 68.38 (t; α -CH₂), 31.92, 29.64, 29.58, 29.34 (4 × t; CH₂), 29.03 (t; β -CH₂), 25.95 (t; *γ*-CH₂), 22.69 (t; CH₂), 14.12 ppm (q; CH₃),^{i 19}F NMR (282.2, CDCl₃, 25°C): δ =-107.56 ppm (m; 2-F); IR (ATR): \tilde{v} =3508 (bw), 3351 (bw), 3208 (bw), 2917 (s), 2850 (m), 1621 (s), 1565 (m), 1469 (m), 1429 (m), 1381 (m), 1345 (s), 1289 (m), 1232 (w), 1194 (w), 1147 (m), 1114 (s), 1027 (m), 1004 (m), 956 (w), 933 (w), 837 (m), 784 (m), 725 (m), 647 cm^{-1} (m).

ⁱ The signal for the quarternary C-1 could not be found for **6**.

1-Bromo-4-dodecyloxy-2-methylbenzene (28)

50 mmol (9.35 g) m-bromocresole, 52 mmol bromododecane (12.2 g) and 60 mmol (2.4 g) NaOH have been dissolved in 50 ml DMSO and heated to 100 $^{\circ}$ C for 12 hours. After cooling to

room temperature the solution has been extracted with MTBE and washed three times with water and dried over magnesium sulphate. The solvent was removed under reduced pressure and the crude product was purified chromatographically (silica gel, chex) yielding 14.55 g (82%) 28 as colourless oil. R_f=0.66 (SiO₂, cHex/EtOAc 5:1); n_D²² : 1.5132; ¹H NMR (300 MHz, CDCl₃, 25°C): δ =7.36 (d, ³J=8.7 Hz, 1H; 6-H), 6.77 (d, ⁴J=2.9 Hz, 1H; 3-H), 6.59 (dd, ³J=8.7 Hz, ${}^{4}J=3.0$ Hz, 1H; 5-H), 3.89 (t, ${}^{3}J=6.5$ Hz, 2H; α -CH₂), 2.35 (s, 3H; 2-CH₃), 1.75 (m, 2H; β -CH₂), 1.42 (m, 2H; γ -CH₂), 1.30-1.20 ppm (m, 16H; CH₂), 0.88 (t, ^{3}J =6.6 Hz, 3H; CH₃); ^{13}C NMR (75.5 MHz, CDCl₃, 25°C): δ=158.34 (s; C-4), 138.65 (s; C-2), 132.70 (d; C-6), 117.10 (d; C-3), 115.11 (s; C-1), 113.44 (d; C-5), 68.14 (t; α -CH₂), 31.91, 29.65, 29.38, 29.35 (4 × t; CH₂), 29.22 (t; β-CH₂), 26.01 (t; γ-CH₂), 23.09 (q; C-3-CH₃), 22.69 (t; CH₂), 14.11 ppm (q; CH₃); IR (ATR): \tilde{v} =2919 (s), 2850 (s), 1588 (w), 1571 (m), 1466 (s), 1377 (m), 1306 (s), 1288 (s), 1237 (s), 1170 (s), 1142 (m), 1126 (m), 1051 (m), 1022 (s), 861 (m), 840 (m), 794 (m), 720 (w), 962 (w), 636 cm⁻¹ (m); MS (EI, 70 eV) m/z (%): 356 (39) $[M^+$ for ⁸¹Br], 354 (40) $[M^+$ for ⁷⁹Br], 276 (36) $[M^+$ -Br], 188 (100) $[M^+$ -C₁₂H₂₅ for ⁸¹Br], 186 (100) $[M^+$ -C₁₂H₂₅ for ⁷⁹Br], 108 (14) $[M^+-C_{12}H_{25}-Br]$; elemental analysis calcd (%) for $C_{19}H_{31}BrO$: C 64.22, H 8.79, found: C 64.60, H 8.87.

4-Dodeclyloxy-2-methylphenyl boronic acid (7)

40 mmol (14.2 g) 1-bromo-4-dodecyloxy-2methylbenzene (**28**) were dissolved in 200 ml dry THF and cooled to -78 °C. 42 mmol (16.8 ml) of a 2.5 molar *n*BuLi solution were added slowly over 90 minutes. 30 minutes after complete addition 120.0 mmol (11.4 ml)

trimethylborate were added rapidly and the solution was allowed to reach room temperature. Subsequently 100 ml 2 molar HCl were added and THF was removed under reduced pressure. After addition of ethyl acetate the organic phase was washed twice with water and once with brine and dried over MgSO₄. The solvent was evaporated and crude product recrystallized from petrolether (40-60 °C) yielding 11.38 g (89%) 4-dodeclyloxy-2-methylphenyl boronic

acid (7) as colourless solid. R_f =0.61 (SiO₂, EtOAc); m.p. Cr 67 °C I (PE); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =8.13 (d, ³*J*=8.1 Hz, 1H; 6-H), 6.78 (m, 2H; 3-H and 5-H), 3.89 (t, ³*J*=4.0 Hz, 2H; α -CH₂), 2.77 (s, 3H; 2-CH₃), 1.78 (m, 2H; β -CH₂), 1.41 (m, 2H; γ -CH₂), 1.30-1.20 (m, 16H; CH₂), 0.89 ppm (t, ³*J*=6.6 Hz, 3H; CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ =162.17 (s; C-4), 148.51 (s; C-2), 139.30 (d; C-6), 116.77 (d; C-3), 110.85 (d, C-5), 67.71 (t; α -CH₂), 31.93, 29.62, 29.42, 29.37 (4 × t; CH₂), 29.26 (t; β -CH₂), 26.05 (t; γ -CH₂), 23.35 (q; C-3-CH₃), 22.70 (t; CH₂), 14.12 ppm (q; CH₃);ⁱⁱ IR (ATR): $\tilde{\nu}$ =3744 (w), 2917 (s), 2859 (s), 1600 (s), 1558 (m), 1469 (m), 1418 (m), 1341 (s), 1282 (s), 1236 (s), 1174 (m), 1126 (m), 1034 (m), 810 (m), 688 (m), 613 cm⁻¹ (m).

Syntheses of the Isatin Derivatives (Type II):

General procedure A:

To a 0.12 molar solution of the respective regioisomer of bromoisatin in dry DME 1.1-1.2 eq. of the boronic acid and 2 mol% tetrakistriphenylphosphin palladium(0) were added and the slurry was heated to 90 °C under argon atmosphere. After complete solvation 2 eq. of a degassed aqueous 1 molar potassium phosphate solution was added and the solution was stirred for 7 hours before it was given on a 0.5 molar hydrochloric acid/ice mixture. After 12 hours the product was obtained as dark red precipitate, filtered, dried and purified chromatographically (silica gel, DCM/MTBE 15:1).

4-(4-(Dodecyloxy)phenyl)indolin-2,3-dione (29)

4.0 mmol (0.904 g) 4-bromoisatin and 4.6 mmol (1.408 g) of the boronic acid **5** have been converted and purified according to general procedure A yielding 0.383 g (24%) **29** as a orange solid. R_f =0.29 (SiO₂, DCM/MTBE 15:1); m.p. Cr 170.8 °C (28.7 kJ/mol) I (DCM/MTBE 15:1); ¹H NMR

(300 MHz, DMSO, 25°C): δ =11.09 (s, 1H; 1-H), 7.56 (t, ³*J*=7.9 Hz, 1H; 6-H), 7.49 (d, ³*J*=8.7 Hz, 2H; 2'-H and 6'-H), 6.98 (d, ³*J*=7.0 Hz, 1H; 5-H), 6.97 (d, ³*J*=8.9 Hz, 2H; 3'-H and 5'-

ⁱⁱ The signal for the quarternary C-1 could not be found for 7.

H), 6.82 (d, ${}^{3}J=7.8$ Hz, 1H; 7-H), 4.01 (t, ${}^{3}J=6.4$ Hz, 2H; α-CH₂), 1.77-1.68 (m, 2H; β-CH₂), 1.49-1.39 (m, 2H; γ-CH₂), 1.25 (s, 16H; CH₂), 0.85 ppm (t, ${}^{3}J=6.5$ Hz, 3H; CH₃); 13 C NMR (75.5 MHz, DMSO, 25°C): δ =182.87 (s; C-3), 159.16 (s; C-4′), 158.98 (s; C-2), 151.36 (s; C-7a), 141.42 (s; C-4), 137.67 (d; C-6), 130.19 (d; C-2′ and C-6′), 128.24 (s; C-1′), 123.98 (d; C-5), 113.81 (two signals: s; C-3a; d; C-3′ and C-5′), 110.28 (d; C-7), 67.41 (t; α-CH₂), 31.21, 28.93, 28.81, 28.69, 28.63, 28.59 (6 × t; CH₂), 25.44 (t; γ-CH₂), 22.01 (t; CH₂), 13.85 ppm (q; CH₃); IR (ATR): $\tilde{\nu}$ =3209 (bw), 2916 (m), 2849 (m), 1720 (s), 1613 (s), 1584 (s), 1568 (m), 1514 (w), 1485 (w), 1469 (w), 1296 (w), 1249 (m), 1181 (w), 1102 (w), 910 (w), 797 (w), 729 (w), 628 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 247 (s), 368 nm (w); MS (EI, 70 eV) m/z (%): 407 (29) [*M*⁺], 239 (54) [*M*⁺-C₁₂H₂₅], 211 (100) [*M*⁺-C₁₂H₂₅, -CO], 184 (10) [*M*⁺-C₁₂H₂₅, -2CO], 168 (7), 154 (4), 139 (7), 127 (6), 83 (6), 69 (14), 57 (21), 55 (29); HRMS (EI, 70 eV): calcd for C₂₆H₃₃NO₃ [*M*⁺]: 407.2461, found: 407.246; elemental analysis calcd (%) for C₂₆H₃₃NO₃: C 76.62, H 8.16, N 3.44, found: C 76.25, H 8.23, N 3.29.

5-(4-Dodecyloxyphenyl)indolin-2,3-dione (30)

2.0 mmol (0.452 g) 5-bromoisatin and 2.4 mmol (0.735 g) of the boronic acid **5** have been converted and purified according to general procedure A yielding 0.556 g (68%) **30** as a orange solid. $R_f=0.32$ (SiO₂,

DCM/MTBE 15:1); m.p. Cr 104.9 (8.1) SC 162.7 (17.0) SmA 173.7 °C (1.1 kJ/mol) I (DCM/MTBE 15:1); ¹H NMR (300 MHz, DMSO, 25°C): δ =11.00 (s, 1H; NH), 7.83 (dd, ³*J*=8.2 Hz, ⁴*J*=1.8 Hz, 1H; 6-H), 7.68 (d, ⁴*J*=1.7 Hz, 1H; 4-H), 7.55 (d, ³*J*=8.7 Hz, 2H; 2'-H and 6'-H), 6.99 (d, ³*J*=8.8 Hz, 2H; 3'-H and 5'-H), 6.98 (d, ³*J*=8.0 Hz, 1H; 7-H), 4.00 (t, ³*J*=6.5 Hz, 2H; α -CH₂), 1.77-1.67 (m, 2H; β -CH₂), 1.45-1.20 (m, 18H; CH₂), 0.85 ppm (t, ³*J*=6.5 Hz, 3H; CH₃); ¹³C NMR (75.5 MHz, DMSO, 25°C): δ =184.03 (s; C-3), 159.15 (s; C-2), 158.13 (s; C-4'), 149.09 (s; C-7a), 135.66 (d; C-6), 134.59 (s; C-5), 130.72 (s; C-1'), 127.00 (d; C-2' and C-6'), 121.54 (d; C-4), 118.02 (s; C-3a), 114.72 (d; C-3' and C-5'), 112.33 (d; C-7), 67.36 (t; α -CH₂), 30.93, 28.61, 28.38 (3 × t; CH₂), 28.31 (t; β -CH₂), 25.15 (t; γ -CH₂), 21.70 (t; CH₂), 13.51 ppm (q; CH₃); IR (ATR): ∇ =3206 (bm), 2914 (s), 2848 (s), 1751 (s), 1717 (s), 1127 (w), 1115 (w), 1035 (w), 969 (w), 894 (w), 821 (m), 755 (w), 718 (m), 660 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 270 (s), 457 nm (w); MS (EI, 70 eV) m/z (%): 407 (41) [*M*⁺],

379 (13) $[M^+$ -CO], 239 (28) $[M^+$ -C₁₂H₂₅], 211 (100) $[M^+$ -C₁₂H₂₅, -CO], 183 (39) $[M^+$ -C₁₂H₂₅, -2CO], 154 (7), 139 (7), 127 (9), 97 (3), 83 (8), 69 (18), 57 (28), 55 (34); HRMS (EI, 70 eV): calcd for C₂₆H₃₃N O₃ $[M^+]$: 407.2461, found: 407.246; elemental analysis calcd (%) for C₂₆H₃₃NO₃: C 76.62, H 8.16, N 3.44, found: C 76.64, H 8.32, N 3.33.

5-(4-Dodecylphenyl)indolin-2,3-dione (31)

4.0 mmol (0.904 g) 5-bromoisatin and 4.2 mmol (1.219 g) of the boronic acid **4** have been converted and purified according to general procedure A yielding 0.527 g (34%) **31** as a orange solid. $R_f=0.26$ (SiO₂,

DCM/MTBE 15:1); m.p. Cr 159.6 °C (21.0 kJ/mol) I (DCM/MTBE 15:1); ¹H NMR (300 MHz, CDCl₃, 25°C): δ=8.41 (s, 1H; NH), 7.81 (s, 1H; 4-H), 7.77 (dd, ³J=8.2 Hz, ⁴J=1.8 Hz, 1H; 6-H), 7.42 (d, ³J=8.1 Hz, 2H; 2'-H and 6'-H), 7.24 (d, ³J=7.9 Hz, 2H; 3'-H and 5'-H), 6.99 (d, ${}^{3}J=8.1$ Hz, 1H; 7-H), 2.62 (t, ${}^{3}J=7.6$ Hz, 2H; α -CH₂), 1.61 (m, 2H; β -CH₂), 1.35 -1.21 (m, 18H; CH₂), 0.86 ppm (t, ³*J*=6.5 Hz, 3H; CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ=183.07 (s; C-3), 159.46 (s; C-2), 147.81 (s; C-7a), 142.96 (s; C-4'), 137.65 (s; C-5), 137.03 (d; C-6), 136.18 (s; C-1'), 129.11 (d; C-3' and C-5'), 126.38 (d; C-2' and C-6'), 123.99 (d; C-4), 118.51 (s; C-3a), 112.61 (d; C-7), 35.57 (t; α-CH₂), 31.91, 31.44, 29.65, 29.58, 29.50, 29.33, 22.68 (7 × t; CH₂), 14.12 ppm (q; CH₃); IR (ATR): \tilde{v} =3200 (bm), 2914 (s), 2847 (m), 1750 (s), 1720 (s), 1616 (m), 1478 (m), 1307 (m), 1260 (w), 1200 (w), 1120 (w), 1013 (w), 963 (w), 838 (m), 813 (w), 746 (w), 717 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 212 (m), 263 (s), 448 nm (w); MS (EI, 70 eV) m/z (%): 391 (82) $[M^+]$, 363 (100) $[M^+-CO]$, 335 (4), 236 (18) $[M^{+} - C_{11}H_{23}], 222 (8), 208 (73) [M^{+} - CO - C_{11}H_{23}], 193 (6), 180 (53) [M^{+} - 2CO - C_{11}H_{23}], 165$ (12), 152 (18), 139 (5), 127 (3), 115 (5), 57 (7); HRMS (EI, 70 eV): calcd for C₂₆H₃₃NO₂ $[M^+]$: 391.251, found: 391.251; elemental analysis calcd (%) for C₂₆H₃₃NO₂: C 79.76, H 8.50, N 3.58, found: C 79.76, H 8.60, N 3.46.

5-(2-Fluoro-4-(dodecyloxy)phenyl)indolin-2,3-dione (32)

3.0 mmol (0.678 g) 5-bromoisatin and 3.3 mmol (1.070 g) of the boronic acid **6** have been converted and purified according to general procedure A yielding 0.904 g (71%)

32 as a red solid. R_f=0.27 (SiO₂, DCM/MTBE 15:1); m.p. Cr 92.8 (31.7) Cr₂ 150.6 °C (26.2 kJ/mol) I (DCM/MTBE 15:1); ¹H NMR (300 MHz, DMSO, 25°C): δ=11.21 (s, 1H; NH), 7.70 (d, ${}^{3}J=8.2$ Hz, 1H; 6-H), 7.56 (s, 1H; 4-H), 7.42 (m, 1H; 6'-H), 7.01 (d, ${}^{3}J=8.2$ Hz, 1H; 7-H), 6.90 (dd, ${}^{3}J_{\text{H}F}$ =13.2 Hz, ${}^{4}J$ =2.3 Hz, 1H; 3'-H), 6.84 (dd, ${}^{3}J$ =8.6 Hz, ${}^{4}J$ =2.3 Hz, 1H; 5'-H), 4.00 (t, ³J=6.4 Hz, 2H; α-CH₂), 1.70 (m, 2H; β-CH₂), 1.40 (m, 2H; γ-CH₂), 1.35-1.18 (m, 16H; CH₂), 0.84 ppm (t, ³*J*=6.5 Hz, 3H; CH₃); ¹³C NMR (75.5 MHz, DMSO, 25°C): δ=184.17 (s; C-3), 159.46 (s, ${}^{1}J_{CF}=245.2$ Hz; C-2'), 159.46 (s, ${}^{3}J_{CF}=11.5$ Hz; C-4'), 159.35 (s; C-2), 149.62 (s; C-7a), 138.07 (d; C-6), 130.54 (d, ${}^{3}J_{CF}$ =4.7 Hz; C-6'), 129.45 (s; C-5), 124.08 (d; C-4), 118.68 (s, ${}^{2}J_{CF}$ =12.9 Hz; C-1'), 117.95 (s; C-3a), 112.34 (d; C-7), 111.31 (d; C-5'), 102.35 (s, ${}^{2}J_{CF}$ =26.3 Hz; C-3'), 67.95 (t; α -CH₂), 31.20, 28.89, 28.62 (3 × t; CH₂), 28.40 (t; β -CH₂), 25.32 (t; *y*-CH₂), 22.00 (t; CH₂), 13.84 ppm (q; CH₃); ¹⁹F NMR (282.2 MHz, DMSO, 25°C): δ =-116.19 ppm (m; 2'-F); IR (ATR): \tilde{v} =3221 (bw), 2915 (s), 2846 (m), 1772 (m), 1724 (s), 1622 (s), 1575 (w), 1479 (m), 1395 (w), 1292 (m), 1156 (m), 1129 (m), 1034 (w), 899 (w), 843 (m), 830 (m), 746 (w), 713 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 268 (s), 455 nm (w); MS (EI, 70 eV) m/z (%): 425 (39) $[M^+]$, 397 (27) $[M^+-CO]$, 257 (21) $[M^+-C_{12}H_{25}]$, 229 (100) $[M^+-C_{12}H_{25} - CO]$, 201 (37) $[M^+-C_{12}H_{25} - 2CO]$; HRMS (EI, 70 eV): calcd for $C_{26}H_{32}FNO_3$ $[M^+]$: 425.2366, found: 425.236; elemental analysis calcd (%) for C₂₆H₃₂FNO₃: C 73.38, H 7.58, N 3.29, found: C 73.11, H 7.75, N 3.44.

5-(4-(Dodecyloxy)-2-methylphenyl)indolin-2,3-dione (33)

5.0 mmol (1.130 g) 5-bromoisatin and 5.5 mmol (1.953 g) of the boronic acid **7** have been converted and purified according to general procedure A yielding 1.201 g (57%)

33 as a orange solid. R_f =0.30 (SiO₂, DCM/MTBE 15:1); m.p. Cr 120.4 (8.0) Cr₂ 158.8 °C (22.5 kJ/mol) I (DCM/MTBE 15:1); ¹H NMR (300 MHz, CDCl₃, 25°C): δ=9.06 (s, 1H; NH), 7.52 (s, 1H; 4-H), 7.48 (d, ³*J*=8.1 Hz, 1H; 6-H), 7.06 (d, ³*J*=8.3 Hz, 1H; 6'-H), 7.02 (d, ³*J*=8.0 Hz, 1H; 7-H), 6.79 (s, 1H; 3'-H), 6.76 (d, ³*J*=8.4 Hz, 1H; 5'-H), 3.96 (t, ³*J*=6.5 Hz, 2H; α-CH₂), 2.22 (s, 3H; 2'-CH₃), 1.78 (m, 2H; β-CH₂), 1.50-1.10 (m, 18H; CH₂), 0.86 ppm (t, ³*J*=6.4 Hz, 3H; alkyl-CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ=183.46 (s; C-3), 159.96 (s; C-2), 158.78 (s; C-4'), 147.82 (s; C-7a), 139.68 (d; C-6), 137.93 (s; C-5), 136.51 (s; C-2'), 131.89 (s; C-1'), 130.52 (d; C-6'), 126.31 (d; C-4), 117.83 (s; C-3a), 116.56 (d; C-3'), 112.34 (d; C-7), 111.95 (d; C-5'), 67.99 (t; α-CH₂), 20.64 (q; C-2'-CH₃), 14.10 ppm (q; CH₂), 29.27 (t; β-CH₂), 26.03 (t; γ-CH₂), 22.67 (t; CH₂), 20.64 (q; C-2'-CH₃), 14.10 ppm (q;

alkyl-CH₃); IR (ATR): $\bar{\nu}$ =3288 (bw), 2915 (s), 2849 (m), 1759 (m), 1739 (s), 1711 (s), 1617 (s), 1568 (w), 1472 (s), 1394 (w), 1364 (w), 1289 (m), 1232 (m), 1197 (m), 1170 (m), 1120 (m), 1052 (w), 964 (w), 905 (w), 861 (w), 851 (m), 789 (w), 750 (w), 716 (w), 650 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 215 (m), 255 (s), 437 nm (w); MS (EI, 70 eV) m/z (%): 421 (27) [M^+], 393 (7) [M^+ -CO], 253 (23) [M^+ -C₁₂H₂₅], 225 (100) [M^+ -CO -C₁₂H₂₅], 196 (12) [M^+ -2CO -C₁₂H₂₅], 180 (5), 170 (11), 141 (6), 115 (6), 55 (10); HRMS (EI, 70 eV): calcd for C₂₇H₃₅NO₃ [M^+]: 421.2617, found: 421.261; elemental analysis calcd (%) for C₂₇H₃₅NO₃: C 76.92, H 8.37, N 3.32, found: C 76.79, H 8.41, N 3.22.

6-(4-(Dodecyloxy)phenyl)indolin-2,3-dione (34)

3.0 mmol (0.678 g) 6-bromoisatin and 3.5 mmol (1.058 g) of the boronic acid **5** have been converted and purified according to general procedure A yielding 1.041 g (85%) **34** as a orange solid. $R_f=0.42$ (SiO₂,

DCM/MTBE 15:1); m.p. Cr 156.0 °C (23.9 kJ/mol) I (DCM/MTBE 15:1); ¹H NMR (300 MHz, DMSO, 25°C): δ=11.09 (s; 1H, 1-H), 7.66 (d, ³J=8.8 Hz, 2H; 2'-H and 6'-H), 7.54 (d, ${}^{3}J=7.9$ Hz, 1H; 4-H), 7.32 (dd, ${}^{3}J=7.9$ Hz, ${}^{4}J=1.3$ Hz, 1H; 5-H), 7.06 (s, 1H; 7-H), 7.05 (d, ${}^{3}J=8.8$ Hz, 2H; 3'-H and 5'-H), 4.02 (t, ${}^{3}J=6.4$ Hz, 2H; α -CH₂), 1.76-1.67 (m, 2H; β -CH₂), 1.47-1.37 (m, 2H; γ -CH₂), 1.24 (s, 16H; CH₂), 0.84 ppm (t, ${}^{3}J_{=}6.6$ Hz, 3H; CH₃); ${}^{13}C$ NMR (75.5 MHz, DMSO, 25°C): δ=183.56 (s; C-3), 159.85 (s; C-2), 159.63 (s; C-4'), 151.39 (s; C-7a), 149.52 (s; C-6), 130.71 (s; C-1'), 128.31 (d; C-2' and C-6'), 125.26 (d; C-4), 120.45 (d; C-5), 116.03 (s; C-3a), 114.98 (d; C-3' and C-5'), 109.13 (d; C-7), 67.53 (t; α-CH₂), 31.21, 28.90, 28.63 (3 × t; CH₂), 28.51 (t; β -CH₂), 25.38 (t; γ -CH₂), 22.01 (t; CH₂), 13.86 ppm (q; CH₃); IR (ATR): \tilde{v} =3275 (bm), 2914 (s), 2850 (m), 1764 (s), 1729 (s), 1715 (s), 1620 (s), 1516 (w), 1470 (m), 1446 (m), 1413 (w), 1337 (m), 1292 (w), 1244 (m), 1174 (s), 1105 (m), 1043 (w), 1021 (w), 953 (w), 893 (w), 824 (m), 796 (m), 787 (w), 730 (w), 653 (m), 626 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 220 (s), 253 (s), 358 nm (m); MS (EI, 70 eV) m/z (%): 407 (29) $[M^+]$, 239 (34) $[M^+-C_{12}H_{25}]$, 211 (100) $[M^+-C_{12}H_{25}, -CO]$, 184 (14) $[M^+-C_{12}H_{25}, -2CO]$, 168 (3), 155 (5), 139 (5), 127 (4), 83 (7), 69 (16), 57 (28), 55 (32); HRMS (EI, 70 eV): calcd for $C_{26}H_{33}NO_3$ [*M*⁺]: 407.2461, found: 407.246; elemental analysis calcd (%) for $C_{26}H_{33}NO_3$: C 76.62, H 8.16, N 3.44, found: C 76.17, H 8.17, N 3.27.

6-(4-Dodecylphenyl)indolin-2,3-dione (35)

4.0 mmol (0.904 g) 6-bromoisatin and 4.5 mmol (1.306 g) of the boronic acid **4** have been converted and purified according to general procedure A yielding 0.798 g (51%) **35** as a orange solid. $R_f=0.35$ (SiO₂,

DCM/MTBE=15:1); m.p. Cr 137 °C I (DCM/MTBE 15:1); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =8.62 (s; 1H, 1-H), 7.64 (d, ³J=7.9 Hz, 1H; 4-H), 7.52 (d, ³J=8.0 Hz, 2H; 2'-H and 6'-H), 7.31 (d, ${}^{3}J=9.7$ Hz, 1H; 5-H), 7.28 (d, ${}^{3}J=8.3$ Hz, 2H; 3'-H and 5'-H), 7.14 (s, 1H; 7-H), 2.64 (t, ${}^{3}J=7.6$ Hz, 2H; α -CH₂), 1.63 (m, 2H; β -CH₂), 1.38-1.18 (m, 18H; CH₂), 0.86 ppm (t, ³*J*=6.5 Hz, 3H; CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C); δ=182.16 (s; C-3), 160.14 (s; C-2), 151.96 (s; C-7a), 149.75 (s; C-6), 144.80 (s; C-4'), 136.39 (s; C-1'), 129.23 (d; C-3' and C-5'), 127.11 (d; C-2' and C-6'), 126.22 (d; C-4), 122.56 (d; C-5), 116.62 (s; C-3a), 110.61 (d; C-7), 35.70 (t; α -CH₂), 31.91, 31.34, 29.65, 29.58, 29.49, 29.34, 22.68 (7 × t; CH₂), 14.12 ppm (q; CH₃); IR (ATR): \tilde{v} =3210 (bw), 2915 (m), 2848 (m), 1748 (m), 1730 (s), 1622 (s), 1470 (w), 1444 (w), 1409 (w), 1340 (w), 1269 (w), 1176 (w), 1109 (w), 947 (w), 837 (w), 812 (w), 798 (w), 783 (w), 729 (m), 667 (w), 625 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 217 (s), 251 (s), 339 nm (m); MS (EI, 70 eV) m/z (%): 391 (37) $[M^+]$, 363 (38) $[M^+$ -CO], 348 (5), 334 (8), 320 (9), 306 (11), 292 (8), 278 (8), 264 (9), 250 (6), 236 (45) $[M^+ - C_{11}H_{23}]$, 222 (100) $[M^+ -C_{12}H_{25}]$, 209 (77) $[M^+ -CO - C_{11}H_{23}]$, 195 (12), 181 (93) $[M^+ -2CO - C_{11}H_{23}]$, 165 (18), 152 (32), 139 (7), 127 (6), 115 (9), 57 (17); HRMS (EI, 70 eV): calcd for C₂₆H₃₃NO₂ [*M*⁺]: 391.2511, found: 391.251; elemental analysis calcd (%) for C₂₆H₃₃NO₂: C 79.76, H 8.50, N 3.58, found: C 79.73, H 8.51, N 3.46.

6-(2-Fluor-4-(dodecyloxy)phenyl)indolin-2,3-dione (36)

1.5 mmol (0.339 g) 6-bromoisatin and 1.65 mmol (0.535 g) of the boronic acid **6** have been converted and purified according to general procedure A yielding 0.270 g (42%) **36** as a orange solid. $R_f=0.35$ (SiO₂,

DCM/MTBE 15:1); m.p. Cr 165 °C I (DCM/MTBE 15:1); ¹H NMR (500 MHz, CDCl₃, 50 °C): δ =8.19 (s, 1H; NH), 7.62 (d, ³*J*=8.0 Hz, 1H; 4-H), 7.35 (m, 1H; 6'-H), 7.23 (d, ³*J*=6.7 Hz, 1H; 5-H), 7.07 (s, 1H; 7-H), 6.78 (dd, ³*J*=8.7 Hz, ⁴*J*=2.4 Hz, 1H; 5'-H), 6.70 (dd, ³*J*_{H,F}=13.0 Hz, ⁴*J*=2.4 Hz, 1H; 3'-H), 4.00 (t, ³*J*=6.6 Hz, 2H; α -CH₂), 1.80 (m, 2H; β -CH₂), 12

1.46 (m, 2H; γ-CH₂), 1.40-1.22 (m, 16H; CH₂), 0.87 ppm (t, ${}^{3}J$ =6.9 Hz, 3H; CH₃); 13 C NMR (125.8 MHz, CDCl₃, 50 °C): δ=182.11 (s; C-3), 161.57 (s, ${}^{3}J_{C,F}$ =11.4 Hz; C-4'), 160.65 (s, ${}^{1}J_{C,F}$ =250.0 Hz; C-2'), 159.71 (s; C-2), 149.38 (s; C-7a), 146.70 (s; C-6), 130.73 (d, ${}^{3}J_{C,F}$ =4.7 Hz; C-6'), 125.74 (d; C-4), 124.20 (d, ${}^{4}J_{C,F}$ =3.2 Hz; C-5), 119.34 (s, ${}^{2}J_{C,F}$ =13.1 Hz; C-1'), 116.81 (s; C-3a), 112.41 (d, ${}^{4}J_{C,F}$ =4.5 Hz; C-7), 111.49 (d, ${}^{4}J_{C,F}$ =2.8 Hz; C-5'), 102.98 (d, ${}^{2}J_{C,F}$ =26.2 Hz; C-3'), 68.79 (t; *α*-CH₂), 31.92, 29.65, 29.62, 29.58, 29.55, 29.34, 29.32 (7 × t; CH₂), 29.11 (t; β-CH₂), 26.00 (t; γ-CH₂), 22.66 (t; CH₂), 14.02 ppm (q; CH₃); 19 F NMR (282.2 MHz, CDCl₃, 50 °C): δ=-113.58 ppm (m; 2'-F); IR (ATR): ∇ =3276 (bm), 2915 (s), 2847 (s), 1762 (m), 1728 (s), 1614 (s), 1517 (w), 1469 (m), 1442 (w), 1425 (w), 1381 (w), 1341 (m), 1292 (s), 1225 (w), 1160 (s), 1118 (s), 997 (w), 953 (w), 896 (w), 845 (m), 815 (w), 799 (m), 729 (w), 715 (w), 692 (w), 653 cm⁻¹ (m); UV/Vis (EtOH, 10 mg/L) λ_{max} : 250 (s), 346 nm (m); MS (EI, 70 eV) m/z (%): 425 (23) [M^{+}], 397 (5) [M^{+} -CO], 257 (17) [M^{+} -C₁₂H₂₅], 242 (14), 229 (100) [M^{+} -C₁₂H₂₅ -CO], 202 (17) [M^{+} -C₁₂H₂₅ -2CO], 173 (5), 157 (6); HRMS (EI, 70 eV): calcd for C₂₆H₃₂FNO₃ [M^{+}]: 425.2366, found: 425.236; elemental analysis calcd (%) for C₂₆H₃₂FNO₃: C 73.38, H 7.58, N 3.29, found: C 72.76, H 7.61, N 3.07.

6-(4-(Dodecyloxy)-2-methylphenyl)indolin-2,3-dione (37)

3.0 mmol (0.678 g) 6-bromoisatin and 4.0 mmol (1.280 g) of the boronic acid 7 have been converted and purified according to general procedure A yielding 1.136 g (90%) **37** as a orange solid. $R_f=0.60$ (SiO₂,

DCM/MTBE 15:1); m.p. Cr 125 °C I (DCM/MTBE 15:1); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =9.04 (s, 1H; NH), 7.58 (d, ³*J*=7.8 Hz, 1H; 4-H), 7.12 (d, ³*J*=8.2 Hz, 1H; 6'-H), 7.01 (dd, ³*J*=7.8 Hz, ⁴*J*=1.2 Hz, 1H; 5-H), 6.90 (s, 1H; 7-H), 6.80 (s, 1H; 3'-H), 6.77 (dd, ³*J*=9.8 Hz, ⁴*J*=2.4 Hz, 1H; 5'-H), 3.97 (t, ³*J*=6.5 Hz, 2H; α -CH₂), 2.28 (s, 3H; 2'-CH₃), 1.78 (m, 2H; β -CH₂), 1.45 (m, 2H; γ -CH₂), 1.38-1.18 (m, 16H; CH₂), 0.86 ppm (t, ³*J*=6.6 Hz, 3H; alkyl-CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ =182.64 (s; C-3), 160.33 (s; C-2), 159.34 (s; C-4'), 153.25 (s; C-6), 149.37 (s; C-7a), 136.53 (s; C-2'), 132.43 (s; C-1'), 130.42 (d; C-6'), 125.38 (d; C-5), 125.25 (d; C-4), 116.81 (s; C-3a), 116.17 (d; C-3'), 113.59 (d; C-7), 112.04 (d; C-5'), 68.03 (t; α -CH₂), 31.89, 29.57, 29.36, 29.32 (4 × t; CH₂), 29.23 (t; β -CH₂), 26.02 (t; γ -CH₂), 22.66 (t; CH₂), 20.73 (q; C-2'-CH₃), 14.09 ppm (q; alkyl-CH₃); IR (ATR): $\tilde{\nu}$ =3285 (bw), 2911 (s), 2846 (m), 1763 (s), 1730 (s), 1613 (s), 1470 (m), 1434 (w), 1380 (w), 1336 (w), 1293 (m), 1231 (m), 1168 (w), 1119 (m), 1073 (w), 1043 (w), 1016 (w), 953 (w), 900

(w), 860 (w), 818 (w), 802 (w), 734 (w), 690 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 249 (s), 351 nm (m); MS (EI, 70 eV) m/z (%): 421 (26) $[M^+]$, 253 (31) $[M^+ -C_{12}H_{25}]$, 225 (100) $[M^+ -C_{12}H_{25} -CO]$, 197 (14) $[M^+ -C_{12}H_{25} -2CO]$, 170 (12), 141 (7), 115 (6), 83 (5), 71 (11), 69 (14), 55 (32); HRMS (EI, 70 eV): calcd for $C_{27}H_{35}NO_3$ $[M^+]$: 421.2617, found: 421.262; elemental analysis calcd (%) for $C_{27}H_{35}NO_3$: C 76.92, H 8.37, N 3.32, found: C 76.65, H 8.29, N 3.23.

7-(4-(Dodecyloxy)phenyl)indolin-2,3-dione (38)

4.0 mmol (0.904 g) 7-bromoisatin and 4.0 mmol (1.280 g) of the boronic acid **5** have been converted and purified according to general procedure A yielding 1.478 g (90%) **38** as a orange solid. R_f =0.68 (SiO₂, DCM/MTBE 15:1); m.p. Cr 109.2 °C (23.6 kJ/mol) I (DCM/MTBE 15:1); ¹H NMR

(300 MHz, DMSO, 25°C): δ =10.84 (s, 1H, NH), 7.52 (d, ³J=7.7 Hz, 1H; 6-H), 7.47 (d, ³J=7.4 Hz, 1H; 4-H), 7.38 (d, ³J=8.4 Hz, 2H; 2'-H and 6'-H), 7.13 (t, ³J=7.7 Hz, 1H; 5-H), 7.01 (d, ${}^{3}J=8.5$ Hz, 2H; 3'-H and 5'-H), 4.00 (t, ${}^{3}J=6.3$ Hz, 2H; α -CH₂), 1.75-1.68 (m, 2H; β -CH₂), 1.47-1.37 (m, 2H; *γ*-CH₂), 1.25 (m, 16H; CH₂), 0.85 ppm (t, ³*J*=6.6 Hz, 3H; CH₃); ¹³C NMR (75.5 MHz, DMSO, 25°C): δ=184.49 (s; C-3), 159.94 (s; C-2), 158.41 (s; C-4'), 147.32 (s; C-7a), 138.45 (d; C-6), 129.44 (d; C-2' and C-6'), 127.42 (s; 1'-C), 125.62 (s; C-7), 123.06 (d; C-4), 122.99 (d; C-5), 118.41 (s; C-3a), 114.72 (d; C-3' and C-5'), 67.41 (t; α-CH₂), 31.24, 28.97, 28.74, 28.67, 28.60 (5 × t; CH₂), 25.46 (t; *γ*-CH₂), 22.03 (t; CH₂), 13.83 ppm (q; CH₃); IR (ATR): \tilde{v} =3256 (bm), 2920 (s), 2850 (m), 1758 (s), 1736 (s), 1607 (s), 1514 (m), 1483 (m), 1436 (m), 1407 (w), 1377 (w), 1324 (w), 1246 (s), 1179 (m), 1110 (w), 1026 (w), 956 (w), 834 (w), 824 (w), 778 (w), 732 (m), 700 (m), 614 cm⁻¹ (w); UV/Vis (EtOH, 10 mg/L) λ_{max} : 248 (s), 428 nm (w); MS (EI, 70 eV) m/z (%): 407 (32) [M^+], 239 (17) [M^+ -C₁₂H₂₅], 211 (7) $[M^+-C_{12}H_{25}, -CO]$, 183 (100) $[M^+-C_{12}H_{25}, -2CO]$, 154 (14), 139 (5), 127 (7), 83 (6), 69 (14), 57 (25), 55 (26); HRMS (EI, 70 eV): calcd for $C_{26}H_{33}NO_3$ [M⁺]: 407.2461, found: 407.245; elemental analysis calcd (%) for C₂₆H₃₃NO₃: C 76.62, H 8.16, N 3.44, found: C 76.56, H 8.15, N 3.27.

Syntheses of the *N*,*N*[']-unsubstituted Indigo Derivatives (Type III):

General procedure B:

To a 0.1 molar solution of the isatin derivative in dry toluene 1.05 eq. phosphorous pentachloride were given and the reaction was heated to 100 °C for 4 hours under argon atmosphere. Subsequently the dark red reaction mixture was cooled to 50 °C, 2.2 eq. thiophenol were added and kept on this temperature for 16 hours. To the dark solution 1.5 times the volume of methanol was given to precipitate the crude product, which was filtered off as a coloured solid. Most of these solid were insoluble and could not be purified further or solved for analytic purpose.

4,4'-Bis-(4-(dodecyloxy)phenyl)indigo (8)

After reacting 0.50 mmol (0.204 g) **29** according to general procedure B the crude product was purified chromatographically (silica gel, DCM/cyclohexane 2:1), yielding 0.091 g (46%) **8** as a blue solid. R_f =0.31 (SiO₂, *c*Hex/DCM 2:1); m.p. Cr 253.1 °C (37.6 kJ/mol) I (*c*Hex/DCM 2:1); ¹H NMR

(300 MHz, CDCl₃, 25°C): δ=9.04 (s, 2H; NH), 7.53 (d, ${}^{3}J$ =8.7 Hz, 4H; 2′-H and 6′-H), 7.42 (t, ${}^{3}J$ =7.8 Hz, 2H; 6-H), 6.98 (d, ${}^{3}J$ =8.7 Hz, 4H; 3′-H and 5′-H), 6.87 (d, ${}^{3}J$ =7.4 Hz, 2H; 5-H), 6.83 (d, ${}^{3}J$ =8.0 Hz, 2H; 7-H), 4.01 (t, ${}^{3}J$ =6.5 Hz, 4H; α-CH₂), 1.80 (m, 4H; β-CH₂), 1.47 (m, 4H; γ-CH₂), 1.40-1.18 (m, 32H; CH₂), 0.87 ppm (t, ${}^{3}J$ =6.7 Hz, 6H; CH₃); ¹³C NMR (125.8 MHz, CDCl₃, 25°C): δ=187.88 (s; C-3), 159.49 (s; C-4′), 152.64 (s; C-7a), 142.24 (s; C-4), 135.57 (d; C-6), 130.38 (d; C-2′and C-6′), 129.30 (s; C-1′), 122.32 (d; C-5), 121.63 (s; C-2), 115.95 (s; C-3a), 113.70 (d; C-3′and C-5′), 110.38 (s; C-7), 67.89 (t; α-CH₂), 29.36 (t; CH₂), 29.25 (t; β-CH₂), 26.07 (t; γ-CH₂), 22.71 (t; CH₂), 14.18 ppm (q; CH₃); IR (ATR): \tilde{v} =2915 (s), 2848 (m), 1635 (m), 1599 (s), 1516 (w), 1486 (m), 1414 (w), 1392 (m), 1300 (w), 1221 (s), 1173 (s), 1080 (s), 1049 (m), 918 (m), 831 (w), 799 (m), 770 (m), 701 (m), 617 cm⁻¹ (w); UV/Vis (NMP, 10 mg/L) λ_{max} : 306 (m), 634 nm (m); MS (EI, 70 eV) m/z (%): 783 (9) [*M*⁺], 615 (2) [*M*⁺-C₁₂H₂₅], 446 (6) [*M*⁺-2C₁₂H₂₅], 418 (3), 401 (4), 250 (3), 225 (6), 196 (9), 168 (11), 139 (12), 84 (50), 57 (100); elemental analysis calcd (%) for C₅₂H₆₆N₂O₄, C 79.76, H 8.50, N 3.58, found: C 79.31, H 8.58, N 3.43.

After reacting 2.42 mmol (0.986 g) **30** according to general procedure B the crude product was filtered off, yielding 0.650 g (69%) **11** as a violet solid. m.p. decomp. at 350 °C, before smectic (MeOH/toluene); IR (ATR): \tilde{v} =3359 (w), 2916 (s), 2848 (m),

1731 (w), 1694 (w), 1635 (s), 1622 (s), 1561 (w), 1517 (w), 1472 (m), 1448 (m), 1268 (s), 1252 (m), 1203 (m), 1144 (m), 1028 (w), 814 (s), 727 (w), 672 cm⁻¹ (w); UV/Vis (NMP, 10 mg/L) λ_{max} : 285 (s), 647 nm (m).

5,5'-Bis-(4-dodecylphenyl)indigo (14)

After reacting 1.00 mmol (0.391 g) **31** according to general procedure B the crude product was filtered off, yielding 0.166 g (44%) **14** as a violet solid. m.p. decomp. at 326 °C, before smectic (MeOH/toluene); IR

(ATR): \tilde{v} =3374 (w), 2915 (s), 2847 (m), 1626 (s), 1612 (s), 1586 (w), 1470 (m), 1447 (m), 1406 (w), 1260 (w), 1189 (w), 1137 (s), 1073 (w), 812 (m), 783 (w), 717 (w), 669 cm⁻¹ (m); UV/Vis (NMP, 10 mg/L) λ_{max} : 641 nm (m).

5,5'-Bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (15)

After reacting 1.00 mmol (0.425 g) **32** according to general procedure B the crude product was suspended in boiling ethyl acetate applying ultrasound and filtered off after cooling to room temperature yielding

0.321 g (78%) **15** as a blue solid. m.p. Cr 116.6 (38.3) SC 322.9 °C (36.5 kJ/mol) I, Decomp. (EtOAc); IR (ATR): \tilde{v} =3373 (m), 2916 (s), 2850 (m), 1637 (s), 1622 (s), 1573 (w), 1516 (w), 1466 (m), 1449 (m), 1406 (w), 1320 (w), 1278 (m), 1230 (w), 1199 (m), 1162 (m), 1141 (m), 1119 (m), 1076 (w), 1036 (w), 1003 (w), 956 (w), 896 (w), 838 (m), 818 (m), 811 (m), 746 (w), 721 (w), 669 cm⁻¹ (m); elemental analysis calcd (%) for C₅₂H₆₄F₂N₂O₄: C 76.25, H 7.88, N 3.42, gef.: C 75.55, H 7.97, N 3.44.

5,5'-Bis-(4-(dodecyloxy)-2-methylphenyl)indigo (16)

After reacting 1.00 mmol (0.421 g) **33** according to general procedure B the crude product was suspended in boiling ethyl acetate applying ultrasound and filtered off after cooling to room temperature yielding

0.267 g (66%) **16** as a blue solid. m.p. Cr 241.4 (4.4) SC 168.6 °C (56.6 kJ/mol) I (EtOAc); IR (ATR): $\bar{\nu}$ =3356 (w), 2916 (s), 2851 (m), 1630 (s), 1609 (s), 1563 (w), 1471 (s), 1394 (w), 1291 (m), 1233 (m), 1187 (s), 1146 (m), 1120 (s), 1074 (m), 1050 (m), 906 (w), 864 (w), 833 (m), 810 (m), 782 (m), 734 (w), 716 (w), 670 cm⁻¹ (w); UV/Vis (NMP, 10 mg/L) λ_{max} : 633 nm (m); elemental analysis calcd (%) for C₅₄H₇₀N₂O₄: C 79.96, H 8.70, N 3.45, gef.: C 79.40, H 8.71, N 3.48.

6,6'-Bis-(4-(dodecyloxy)phenyl)indigo (10)

After reacting 2.00 mmol (0.815 g) **34** according to general procedure B the crude product was filtered off, yielding 0.297 g (38%) **10** as a dark green solid. m.p. Decomp. at 320 °C (MeOH/toluene); IR (ATR): \overline{v}

=3308 (w), 2917 (s), 2848 (s), 1604 (m), 1518 (m), 1466 (w), 1448 (w), 1378 (w), 1247 (w), 1176 (w), 1143 (w), 1110 (w), 1034 (w), 820 (w), 779 (w), 719 (w), 707 cm⁻¹ (w); UV/Vis (NMP, 10 mg/L) λ_{max} : 316 (s), 405 (s); 618 nm (m).

6,6'-Bis-(4-dodecylphenyl)indigo (20)

After reacting 1.00 mmol (0.391 g) **35** according to general procedure B the crude product was filtered off, yielding 0.122 g (33%) **20** as a dark green solid. m.p. Decomp. at 320 °C (MeOH/toluene); IR (ATR): \tilde{v}

=3293 (w), 2916 (s), 2847 (s), 1613 (s), 1560 (m), 1520 (w), 1463 (w), 1447 (m), 1380 (w), 1338 (m), 1303 (w), 1180 (w), 1143 (m), 1110 (m), 1080 (w), 1006 (w), 916 (w), 870 (w), 843 (w), 809 (w), 776 (w), 746 (w), 705 cm⁻¹ (w).

6,6'-Bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (21)

After reacting 0.50 mmol (0.213 g) **36** according to general procedure B the crude product was suspended in boiling ethyl acetate applying ultrasound and filtered off after cooling to room temperature yielding

0.119 g (58%) **21** as a green solid. m.p. Cr 239.2 (7.9) SmF/I 296.8 °C (56.1 kJ/mol) I (EtOAc); IR (ATR): $\bar{\nu}$ =3326 (w), 2917 (m), 2846 (m), 1609 (s), 1576 (m), 1513 (m), 1463 (w), 1444 (m), 1384 (w), 1314 (m), 1283 (m), 1233 (m), 1160 (m), 1132 (s), 1076 (m), 1010 (w), 956 (w), 903 (w), 873 (w), 829 (m), 782 (w), 746 (m), 704 cm⁻¹ (m); UV/Vis (CHCl₃, 10 mg/L) λ_{max} : 341 (m), 619 nm (m); elemental analysis calcd (%) for C₅₂H₆₄F₂N₂O₄: C 76.25, H 7.88, N 3.42, found: C 76.44, H 8.04, N 3.49.

6,6'-Bis-(4-(dodecyloxy)-2-methylphenyl)indigo (22)

After reacting 1.50 mmol (0.632 g) **37** according to general procedure B the crude product was suspended in boiling ethyl acetate applying ultrasound and filtered off after cooling to room temperature yielding

0.459 g (75%) **22** as a green solid. m.p. Cr 141.0 (20.5) SmF/I 263.8 °C (44.2 kJ/mol) I (EtOAc); IR (ATR): \tilde{v} =3334 (w), 2915 (m), 2848 (m), 1607 (s), 1576 (m), 1509 (m), 1463 (w), 1441 (s), 1383 (w), 1307 (m), 1286 (m), 1230 (m), 1200 (w), 1166 (w), 1130 (s), 1113 (s), 1077 (m), 1040 (w), 1012 (w), 896 (w), 843 (w), 783 (m), 744 (w), 707 cm⁻¹ (m); UV/Vis (CHCl₃, 20 mg/L) λ_{max} : 292 (s), 398 (m), 604 nm (m); elemental analysis calcd (%) for C₅₄H₇₀N₂O₄: C 79.96, H 8.70, N 3.45, found: C 79.69, H 8.67, N 3.37.

7,7'-Bis-(4-(dodecyloxy)phenyl)indigo (11)

After reacting 2.00 mmol (0.815 g) **38** according to general procedure B the crude product was purified chromatographically (silica gel, DCM/cyclohexane 1:1), yielding 0.426 g (54%) **11** as a blue solid. R_f =0.31 (SiO₂, *c*Hex/DCM 1:1); m.p. Cr 217.8 °C (30.1 kJ/mol) I (*c*Hex/DCM 1:1); ¹H NMR

(300 MHz, CDCl₃, 25°C): δ =9.08 (s, 2H; NH), 7.62 (d, ³*J*=7.6 Hz, 2H; 4-H), 7.47 (d, ³*J*=8.4 Hz, 4H; 2'-H and 6'-H), 7.44 (d, ³*J*=7.2 Hz, 2H; 6-H), 7.05 (d, ³*J*=8.5 Hz, 4H; 3'-H and 5'-H), 7.00 (t, ³*J*=7.7 Hz, 2H; 5-H), 4.02 (t, ³*J*=6.5 Hz, 4H; *α*-CH₂), 1.83 (m, 4H; *β*-CH₂), 1.49 (m, 4H; *γ*-CH₂), 1.41-1.18 (m, 32H; CH₂), 0.87 ppm (t, ³*J*=6.6 Hz, 6H; CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ =188.82 (s; C-3), 159.22 (s; C-4'), 149.11 (s; C-7a), 135.42 (d; C-6), 128.75 (d; C-2' and C-6'), 128.26 (s; C-1'), 126.19 (s; C-7), 122.75 (d; C-4), 121.53 (s; C-2), 121.27 (d; C-5), 120.33 (s; C-3a), 115.50 (d; C-3' and C-5'), 68.16 (t; *α*-CH₂), 31.92, 29.68, 29.62, 29.42, 29.36 (5 × t; CH₂), 29.28 (t; *β*-CH₂), 26.08 (t; *γ*-CH₂), 22.69 (t; CH₂), 14.12 ppm (q; CH₃); IR (ATR): \tilde{v} =2918 (m), 2849 (s), 1635 (s), 1602 (m), 1513 (w), 1483 (m), 1430 (w), 1409 (m), 1300 (w), 1282 (m), 1248 (m), 1146 (s), 1094 (m), 1052 (w), 1021 (w), 837 (w), 807 (w), 757 (w), 708 cm⁻¹ (w); UV/Vis (NMP, 10 mg/L) λ_{max} : 314 (s), 621 nm (m); MS (EI, 70 eV) m/z (%): 783 (15) [*M*⁺], 613 (3) [*M*⁺-C1₂H₂₅], 446 (8) [*M*⁺-2C1₂H₂₅], 417 (6), 218 (3), 196 (7), 139 (6), 109 (6), 84 (26), 71 (37), 57 (100); elemental analysis calcd (%) for C₅₂H₆₆N₂O₄, C 79.76, H 8.50, N 3.58, found: C 79.41, H 8.47, N 3.46.

Syntheses of the *N*,*N*⁻-diacetylated Indigo Derivates (Type IV):

General procedure C:

1 eq. of the *N*,*N'*-unsubstituted indigo derivative was suspended in 50 times the amount of dry NMP and treated with 50 eq. acetic anhydride and 50 eq. acetyl chloride. The reaction suspension was stirred for 6 hours at 90 °C under argon atmosphere. After adding twice the amount of water and ethyl acetate, the organic phase was separated and washed five times with water and once with saturated sodium carbonate solution and dried over magnesium sulphate. The solvent was removed under reduced pressure and the crude product was purified chromatographically (silica gel, DCM) and finally recrystallised from ethanol.

N,*N*'-Diacetyl-5,5'-bis-(4-(dodecyloxy)phenyl)indigo (12)

0.50 mmol (0.391 g) 9 have been converted and purified according to general procedure C yielding 0.324 g (75%) 12 as a violet solid. R_f=0.34 (SiO₂, *c*Hex/EtOAc 3:1); m.p. Cr 124.8 (53.2) Cr₂ 160.5 °C (26.7 kJ/mol) I (EtOH); ¹H NMR (300 MHz, CDCl₃, 25°C):

 $\delta = 8.26$ (d, ${}^{3}J = 8.4$ Hz, 2H; 7-H), 7.89 (d, ${}^{4}J = 1.7$ Hz, 2H; 4-H), 7.82 (dd, ${}^{3}J = 8.6$ Hz, ${}^{4}J = 1.9$ Hz, 2H; 6-H), 7.48 (d, ³J=8.7 Hz, 4H; 2'-H and 6'-H), 6.95 (d, ³J=8.7 Hz, 4H; 3'-H and 5'-H), 3.98 (t, ${}^{3}J=6.5$ Hz, 4H; α -CH₂), 2.57 (s, 6H; NCOCH₃), 1.79 (m, 4H; β -CH₂), 1.45 (m, 4H; y-CH₂), 1.38-1.20 (m, 32H; CH₂), 0.86 ppm (t, ${}^{3}J=6.5$ Hz, 6H; CH₃); ${}^{13}C$ NMR (75.5 MHz, CDCl₃, 25°C): δ=184.19 (s; C-3), 169.96 (s; NCOCH₃), 159.22 (s; C-4'), 147.78 (s; C-7a), 138.34 (s; C-5), 135.09 (d; C-6), 131.23 (s; C-1'), 127.89 (d; C-2' and C-6'), 126.53 (s; C-2), 122.45 (s; C-3a), 121.64 (d; C-4), 117.46 (d; C-7), 115.02 (d; C-3' and C-5'), 68.15 (t; α -CH₂), 31.90, 29.62, 29.58, 29.38, 29.33 (5 × t; CH₂), 29.22 (t; β -CH₂), 26.02 (t; γ -CH₂), 23.88 (q; NCOCH₃), 22.67 (t; CH₂), 14.10 ppm (q; CH₃); IR (ATR): v=2921 (m), 2851 (m), 1707 (m), 1676 (s), 1608 (m), 1520 (w), 1470 (s), 1360 (w), 1298 (m), 1268 (m), 1245 (s), 1179 (m), 1115 (m), 1071 (s), 1029 (m), 929 (w), 822 (m), 789 (w), 777 (w), 718 (w), 646 cm⁻¹ (w); UV/Vis (CHCl₃, 10 mg/L) λ_{max} : 289 (s), 345 (m), 579 nm (m); elemental analysis calcd (%) for C₅₆H₇₀N₂O₆: C 77.56, H 8.14, N 3.23, found: C 77.78, H 8.17, N 3.15.

N,N'-Diacetyl-5,5'-bis-(4-dodecylphenyl)indigo (17)

0.15 mmol (0.113 g) 14 have been converted and purified according to general procedure C yielding 0.113 g (87%) 17 as a violet solid. R_f=0.43 (SiO₂, cHex/EtOAc 3:1); m.p. Cr 106.8 °C (56.2 kJ/mol) I (EtOH); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =8.29 d, ³J=8.3

Hz, 2H; 7-H), 7.94 (d, ⁴J=1.7 Hz, 2H; 4-H), 7.87 (dd, ³J=8.6 Hz, ⁴J=2.0 Hz, 2H; 6-H), 7.48 (d, ${}^{3}J=8.1$ Hz, 4H; 2'-H and 6'-H), 7.25 (d, ${}^{3}J=8.0$ Hz, 4H; 3'-H and 5'-H), 2.63 (t, ${}^{3}J=7.7$ Hz, 4H; α-CH₂), 2.58 (s, 6H; NCOCH₃), 1.62 (m, 4H; β-CH₂), 1.38-1.18 (m, 36H; CH₂), 0.86 ppm (t, ³*J*=6.6 Hz, 6H; CH₃);¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ=184.15 (s; C-3), 169.95 (s; NCOCH₃), 148.05 (s; C-7a), 142.98 (s; C-4'), 138.57 (s; C-5), 136.28 (s; C-1'), 135.41 (d; C-6), 129.09 (d; C-3' and C-5'), 126.68 (d; C-2' and C-6'), 122.43 (s; C-3a), 122.03 (d; C-4), 117.47 (d; C-7), 35.59 (t; α -CH₂), 31.90 (t; CH₂), 31.46 (t; β -CH₂), 29.65, 29.50, 29.33 (3 × t; CH₂), 23.89 (q; NCOCH₃), 22.68 (t; CH₂), 14.12 ppm (q; CH₃); IR (ATR): $\overline{\nu}$ =2922 (s), 2851 (m), 1707 (m), 1679 (s), 1612 (m), 1472 (s), 1435 (w), 1360 (m), 1303 (m), 1284 (m), 1235 (w), 1187 (m), 1169 (m), 1115 (m), 1071 (m), 1026 (w), 1004 (w), 930 (w), 828 (w), 777 (w), 718 (w), 616 cm⁻¹ (s); UV/Vis (CHCl₃, 10 mg/L) λ_{max} : 284 (m), 343 (m), 572 nm (m); elemental analysis calcd (%) for C₅₆H₇₀N₂O₄: C 80.53, H 8.45, N 3.35, found: C 80.48, H 8.43, N 3.29.

N,N'-Diacetyl-5,5'-bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (18)

0.12 mmol (0.100 g) **15** have been converted and purified according to general procedure C yielding 0.038 g (34%) **18** as a violet solid. R_f =0.23 (SiO₂, DCM); m.p. Cr 170.9 °C (32.6 kJ/mol) I (EtOH); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =8.27 (d, ³*J*=8.3 Hz, 2H; 7-

H), 7.87 (s, 2H; 4-H), 7.78 (d, ${}^{3}J$ =8.7 Hz, 2H; 6-H), 7.30 (m, 2H; 6′-H), 6.75 (dd, ${}^{3}J$ =8.6 Hz, ${}^{4}J$ =2.0 Hz, 2H; 5′-H), 6.68 (dd, ${}^{3}J_{H,F}$ =12.7 Hz, ${}^{4}J$ =2.2 Hz, 2H; 3′-H), 3.96 (t, ${}^{3}J$ =6.5 Hz, 4H; α -CH₂), 2.56 (s, 6H; NCOCH₃), 1.78 (m, 4H; β -CH₂), 1.44 (m, 4H; γ -CH₂), 1.38-1.20 (m, 32H; CH₂), 0.86 ppm (t, ${}^{3}J$ =6.5 Hz, 6H; CH₃); 13 C NMR (75.5 MHz, CDCl₃, 25°C): δ =184.02 (s; C-3), 169.92 (s; NCOCH₃), 160.35 (s, ${}^{3}J_{C,F}$ =10.9 Hz; C-4′), 160. 23 (s, ${}^{1}J_{C,F}$ =248.0 Hz; C-2′), 147.94 (s; C-7a), 137.19 (d; C-6), 133.20 (s; C-5), 130.54 (d, ${}^{3}J_{C,F}$ =4.5 Hz; C-6′), 126.44 (s; C-2), 124.09 (d; C-4), 122.13 (s; C-3a), 119.00 (s, ${}^{2}J_{C,F}$ =13.5 Hz; C-1′), 117.13 (d; C-7), 111.09 (d; C-5′), 102.61 (s, ${}^{2}J_{C,F}$ =26.1 Hz; C-3′), 68.51 (t; α -CH₂), 31.90, 29.62, 29.57, 29.33 (4 × t; CH₂), 29.07 (t; β -CH₂), 25.96 (t; γ -CH₂), 23.88 (q; NCOCH₃), 22.67 (t; CH₂), 14.10 pm (q; CH₃); ¹⁹F NMR (282.2 MHz, CDCl₃): δ =-115.61 ppm (m; 2′-F); IR (ATR): $\overline{\nu}$ =2921 (s), 2846 (m), 1707 (s), 1679 (s), 1617 (s), 1568 (w), 1514 (w), 1469 (s), 1361 (m), 1310 (m), 1285 (s), 1225 (m), 1172 (s), 1120 (s), 1071 (s), 1028 (w), 929 (w), 837 (w), 722 (w), 623 cm⁻¹ (w); UV/Vis (CHCl₃, 10 mg/L) λ_{max} : 287 (s), 340 (s), 570 nm (m); elemental analysis calcd (%) for C₅₆H₆₈F₂N₂O₆: C 74.47, H 7.59, N 3.10, found: C 74.10, H 7.75, N 3.09.

N,N'-Diacetyl-5,5'-bis-(4-(dodecyloxy)-2-methylphenyl)indigo (19)

0.19 mmol (0.150 g) **16** have been converted and purified according to general procedure C yielding 0.130 g (78%) **19** as a red-violet solid. R_f =0.30 (SiO₂, DCM); m.p. Cr 110.6 °C (47.2 kJ/mol) I (EtOH); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =8.27 (d, ³*J*=8.4

Hz, 2H; 7-H), 7.68 (d, ⁴*J*=1.6 Hz, 2H; 4-H), 7.58 (dd, ³*J*=8.5 Hz, ⁴*J*=1.9 Hz, 2H; 6-H), 7.09 (d, ³*J*=8.3 Hz, 2H; 6'-H), 6.79 (s, 2H; 3'-H), 6.76 (dd, ³*J*=8.6 Hz, ⁴*J*=2.4 Hz, 2H; 5'-H), 3.96 (t, ³*J*=6.5 Hz, 4H; α-CH₂), 2.58 (s, 6H; NCOCH₃), 2.21 (s, 6H; 2'-CH₃), 1.78 (m, 4H; β-CH₂), 1.45 (m, 4H; γ-CH₂), 1.38-1.18 (m, 32H; CH₂), 0.86 ppm (t, ³*J*=6.5 Hz, 6H; alkyl-CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ =184.13 (s; C-3), 169.95 (s; NCOCH₃), 158.82 (s; C-4'), 147.73 (s; C-7a), 139.10 (s; C-5), 138.02 (d; C-6), 136.59 (s; C-2'), 132.09 (s; C-1'), 130.69 (d; C-6'), 126.56 (s; C-2), 124.57 (d; C-4), 121.87 (s; C-3a), 116.89 (d; C-7), 116.56 (d; C-3'), 111.95 (d; C-5'), 68.01 (t; α-CH₂), 31.90, 29.59, 29.38, 29.34 (4 × t; CH₂), 29.28 (t; β-CH₂), 26.04 (t; γ-CH₂), 23.90 (q; NCOCH₃), 22.68 (t; CH₂), 20.67 (q; C-2'-CH₃), 14.11 ppm (q; alkyl-CH₃); IR (ATR): $\tilde{\nu}$ =2920 (s), 2850 (m), 1708 (m), 1680 (s), 1610 (m), 1566 (w), 1469 (s), 1360 (w), 1268 (s), 1231 (s), 1186 (m), 1170 (s), 1114 (m), 1068 (s), 928 (m), 840 (w), 813 (w), 778 (w), 721 cm⁻¹ (w); UV/Vis (CHCl₃, 10 mg/L) λ_{max}: 279 (s), 569 nm (m); elemental analysis calcd (%) for C₅₈H₇₄N₂O₆: C 77.82, H 8.33, N 3.13, found: C 77.95, H 8.34, N 3.09.

N,N'-Diacetyl-6,6'-bis-(4-(dodecyloxy)phenyl)indigo (13)

0.13 mmol (0.100 g) **10** have been converted and purified according to general procedure C yielding 0.065 g (60%) **13** as a red solid. R_f =0.14/0.31 (SiO₂, *c*Hex/EtOAc 3:1); m.p. Cr 180.6 (10.7) SmA 203.9 °C (7.0 kJ/mol) I

(EtOH); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =8.49 (s, 2H; 7-H), 7.76 (d, ³*J*=8.0 Hz, 2H; 4-H), 7.61 (d, ³*J*=8.8 Hz, 4H; 2′-H and 6′-H), 7.44 (dd, ³*J*=8.0 Hz, ⁴*J*=1.3 Hz, 2H; 5-H), 6.97 (d, ³*J*=8.8 Hz, 4H; 3′-H and 5′-H), 4.00 (t, ³*J*=6.5 Hz, 4H; α-CH₂), 2.57 (s, 6H; NCOCH₃), 1.80 (m, 4H; β-CH₂), 1.46 (m, 4H; γ-CH₂), 1.40-1.18 (m, 32H; CH₂), 0.87 ppm (t, ³*J*=6.6 Hz, 6H; CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ =183.43 (s; C-3), 170.24 (s; NCOCH₃), 160.19 (s; C-4′), 149.90 [two signals: (s; C-6) and (s; C-7a)], 131.82 (s; C1′), 128.83 (d; C-2′ and C-22 6'), 127.00 (s; C-2), 124.64 (d; C-4), 123.62 (d; C-5), 120.12 (s; C-3a), 115.05 (d; C-3' and C-5'), 114.85 (d, C-7), 68.23 (t; α-CH₂), 31.95, 29.67, 29.63, 29.42, 29.38 (5 × t; CH₂), 29.25 (t; β-CH₂), 26.06 (t; γ-CH₂), 24.05 (q; NCOCH₃), 21.92 (t; CH₂), 14.15 ppm (q; CH₃); IR (ATR): $\bar{\nu}$ =2921 (s), 2850 (m), 1707 (m), 1672 (m), 1598 (s), 1570 (w), 1518 (m), 1468 (m), 1433 (m), 1405 (m), 1363 (m), 1328 (w), 1302 (m), 1243 (s), 1177 (s), 1108 (m), 1070 (m), 1003 (w), 969 (w), 934 (w), 914 (w), 889 (w), 823 (m), 776 (m), 713 (w), 688 (w), 654 cm⁻¹ (w); UV/Vis (CHCl₃, 10 mg/L) λ_{max}: 258 (m), 289 (m), 415 nm (m); elemental analysis calcd (%) for C₅₆H₇₀N₂O₆: C 77.56, H 8.14, N 3.23, found: C 77.64, H 8.16, N 3.17.

N,*N*'-Diacetyl-6,6'-bis-(4-dodecylphenyl)indigo (23)

0.15 mmol (0.113 g) **20** have been converted and purified according to general procedure C yielding 0.123 g (95%) **23** as a red solid. $R_f=0.33/0.48$ (SiO₂, *c*Hex/EtOAc 3:1); m.p. Cr 99.2 (18.8) Cr₂ 168.1 (7.6) SmA 178.0 °C

(6.9 kJ/mol) I (EtOH); ¹H NMR (300 MHz, CDCl₃, 25°C): δ =8.52 (s, 2H; 7-H), 7.78 (d, ³*J*=8.0 Hz, 2H; 4-H), 7.58 (d, ³*J*=8.1 Hz, 4H; 2'-H and 6'-H), 7.47 (dd, ³*J*=8.0 Hz, ⁴*J*=1.2 Hz, 2H; 5-H), 7.28 (d, ³*J*=8.1 Hz, 4H; 3'-H and 5'-H), 2.65 (t, ³*J*=7.8 Hz, 4H; α -CH₂), 2.57 (s, 6H; NCOCH₃), 1.64 (m, 4H; β -CH₂), 1.38-1.18 (m, 36H; CH₂), 0.86 ppm (t, ³*J*=7.8 Hz, 6H; CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ =183.52 (s; C-3), 170.15 (s; NCOCH₃), 150.22 (s; C-6), 149.80 (s; C-7a), 144.25 (s; C-4'), 137.00 (s; C1'), 129.11 (d; C-3' and C-5'), 127.47 (d; C-2' and C-6'), 126.87 (s; C-2), 124.59, 124.04 [two signals: (d; C-4) and (d; C-5)], 120.43 (s; C-3a), 115.34 (d, C-7), 35.69 (t; α -CH₂), 31.92 (t; CH₂), 31.40 (t; β -CH₂), 29.80, 29.67, 29.59, 29.51, 29.35 (5 × t; CH₂), 24.01 (q; NCOCH₃), 22.69 (t; CH₂), 14.13 ppm (q; CH₃); IR (ATR): $\overline{\nu}$ =2921 (s), 2851 (s), 1609 (s), 1602 (s), 1561 (m), 1463 (w), 1431 (m), 1402 (m), 1363 (m), 1302 (m), 1240 (m), 1181 (w), 1096 (s), 1068 (w), 1005 (w), 969 (w), 915 (w), 888 (w), 822 (w), 776 (w), 718 (w), 688 cm⁻¹ (w); UV/Vis (CHCl₃, 10 mg/L) λ_{max} : 253 (m), 311 (m), 381 nm (m); elemental analysis calcd (%) for C₅₆H₇₀N₂O₄: C 80.53, H 8.45, N 3.35, found: C 80.53, H 8.42, N 3.30.

N,N'-Diacetyl-6,6'-bis-(2-fluoro-4-(dodecyloxy)phenyl)indigo (24)

0.10 mmol (0.081 g) 21 have been converted and purified according to general procedure C yielding 0.058 g (73%) 24 as a red solid. R_f=0.07/0.23 (SiO₂, DCM); m.p. Cr 140.7 (15.5) SmA 145.9 (1.3) N 149.3 °C (1.9

kJ/mol) I (EtOH); ¹H NMR (300 MHz, CDCl₃, 25°C): δ=8.41 (s, 2H; 7-H), 7.77 (d, ³J=8.0 Hz, 2H; 4-H), 7.41 (d, ${}^{3}J=8.4$ Hz, 2H; 5-H), 7.40 (m, 2H; 6'-H), 6.78 (dd, ${}^{3}J=8.5$ Hz, ${}^{4}J=2.2$ Hz, 2H; 5'-H), 6.70 (dd, ${}^{3}J_{HF}$ =12.7 Hz, ${}^{4}J$ =2.3 Hz, 2H; 3'-H), 3.98 (t, ${}^{3}J$ =6.5 Hz, 4H; α -CH₂), 2.56 (s, 6H; NCOCH₃), 1.79 (m, 4H; β-CH₂), 1.45 (m, 4H; γ-CH₂), 1.38-1.20 (m, 32H; CH₂), 0.86 ppm (t, ${}^{3}J=6.6$ Hz, 6H; CH₃); ${}^{13}C$ NMR (75.5 MHz, CDCl₃, 25°C); $\delta=183.51$ (s; C-3), 170.06 (s; NCOCH₃), 161.08 (s, ${}^{3}J_{CF}$ =11.5 Hz; C-4'), 160.44 (s, ${}^{1}J_{CF}$ =249.9 Hz; C-2'), 149.40 (s; C-7a), 144.96 (s; C-6), 131.14 (d, ${}^{3}J_{C,F}$ =4.5 Hz; C-6'), 126.70 (s; C-2), 125.87 (d; C-5), 124.14 (d; C-4), 120.42 (s; C-3a), 119.81 (s, ²J_{C,F}=13.0 Hz; C-1'), 117.05 (d; C-7), 111.17 (d; C-5'), 102.68 (d, ${}^{2}J_{CF}$ =26.0 Hz; C-3'), 68.57 (t; α -CH₂), 31.90, 29.63, 29.58, 29.34 $(4 \times t; CH_2)$, 29.05 (t; β -CH₂), 25.96 (t; γ -CH₂), 23.99 (q; NCOCH₃), 22.68 (t; CH₂), 14.11 ppm (q; CH₃); ¹⁹F NMR (282.2 MHz, CDCl₃, 25 °C): δ=-114.02 ppm (m; 2'-F); IR (ATR): ν =2919 (s), 2850 (m), 1702 (m), 1604 (s), 1565 (m), 1548 (m), 1514 (m), 1466 (m), 1432 (w), 1410 (m), 1363 (m), 1323 (s), 1289 (s), 1228 (m), 1184 (m), 1164 (m), 1095 (s), 1034 (w), 1004 (w), 970 (m), 909 (w), 875 (w), 848 (w), 831 (w), 769 (w), 746 (w), 715 (w), 688 (w), 647 cm⁻¹ (w); UV/Vis (CHCl₃, 10 mg/L) λ_{max} : 256 (s), 311 (m), 381 nm (m); elemental analysis calcd (%) for C₅₆H₆₈F₂N₂O₆: C 74.47, H 7.59, N 3.10, found: C 74.46, H 7.62, N 3.10.

N,*N*'-Diacetyl-6,6'-bis-(4-(dodecyloxy)-2-methylphenyl)indigo (25)

0.20 mmol (0.162 g) 22 have been converted and purified according to general procedure C yielding 0.135 g (83%) 25 as a red solid. R_f=0.10/0.30 (SiO₂, DCM); m.p. Cr 198.0 °C (50.3 kJ/mol) I (EtOH); ¹H NMR (300 MHz,

CDCl₃, 25°C): δ=8.23 (s, 2H; 7-H), 7.75 (d, ³*J*=7.9 Hz, 2H; 4-H), 7.20 (dd, ³*J*=7.8 Hz, ⁴*J*=1.1 Hz, 2H; 5-H), 7.16 (d, ${}^{3}J=8.3$ Hz, 2H; 6'-H), 6.81 (s, 2H; 3'-H), 6.79 (dd, ${}^{3}J=8.5$ Hz, ${}^{4}J=2.3$ Hz, 2H; 5'-H), 3.98 (t, ${}^{3}J=6.5$ Hz, 4H; α -CH₂), 2.56 (s, 6H; NCOCH₃), 2.29 (s, 6H; 2'-CH₃), 1.79 (m, 4H; β -CH₂), 1.46 (m, 4H; γ -CH₂), 1.38-1.18 (m, 32H; CH₂), 0.87 ppm (t, ³J=6.5 Hz, 6H; alkyl-CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25°C): δ=183.62 (s; C-3), 170.02 (s; NCOCH₃), 159.17 (s; C-4'), 151.31 (s; C-6), 149.16 (s; C-7a), 136.62 (s; C-2'), 132.96 (s; C-1'), 130.67 (d; C-6'), 126.79 (s; C-2), 126.64 (d; C-5), 123.81 (d; C-4), 120.14 (s; C-3a), 118.01 (d; C-7), 116.70 (d; C-3'), 111.91 (d; C-5'), 68.01 (t; α-CH₂), 31.90, 29.59, 29.38, 29.33 (4 × t; CH₂), 29.26 (t; β-CH₂), 26.04 (t; γ-CH₂), 23.98 (q; NCOCH₃), 22.67 (t; CH₂), 20.82 (q; C-2'-CH₃), 14.10 ppm (q; alkyl-CH₃); IR (ATR): \tilde{v} =2920 (s), 2850 (s), 1701 (s), 1600 (s), 1507 (w), 1467 (m), 1425 (m), 1363 (m), 1320 (m), 1286 (m), 1234 (s), 1196 (m), 1099 (s), 1066 (w), 970 (w), 903 (w), 863 (w), 840 (w), 813 (w), 780 (w), 743 (w), 723 (w), 700 cm⁻¹ (w); UV/Vis (CHCl₃, 10 mg/L) λ_{max}: 281 (s), 393 nm (s); elemental analysis calcd (%) for C₅₈H₇₄N₂O₆: C 77.82, H 8.33, N 3.13, found: C 77.86, H 8.30, N 3.08.

UV-Vis Spectra

PO12-4,4'-Indi (8)

PO12-5,5'-Indi (9)

1 Aug 2008 File Name G:\JAPO2\INDIGO IN NMP.CSV Date 19 Mar 2007 20:16:46 Spectral Region UV-Vis-NIR Technique UV-Visible X Axis Wavelength (nanometers) Spectrum Range 200.0000 - 800.0000 Y Axis Arbitrary Points Count Data Spacing 601 1.0000 285 0.65 0.60 0.55 0.50 = 0.45= 0.40 Arbitrary 0.30 0.25 0.20 0.15= 647 0.10 0.05 0.00 300 350 400 550 700 750 800 450 500 600 650 Wavelength (nm) No nm Arbitrary FWHH Asym Intensity 1 285.00 0.672 72.82 0.06 W 2 647.00 0.071 103.17 VW -0.54

$\textbf{PO12-6,6'-Indi} \ (10)$

PO12-7,7'-Indi (11)

1 Aug 2008 File Name G:\JAPO2\INDIGO IN NMP.CSV Date 19 Mar 2007 20:16:46 Spectral Region UV-Vis-NIR Technique UV-Visible X Axis Wavelength (nanometers) Spectrum Range 200.0000 - 800.0000 Y Axis Arbitrary Points Count Data Spacing 601 1.0000 0.35 --314 0.30 -0.25 0.20 Arbitrary 0.15 -621 0.10 0.05 -0.00 -300 350 5Ó0 550 6Ó0 650 700 750 800 400 450 Wavelength (nm) No nm Arbitrary Intensity 1 314.00 0.301 W 2 621.00 0.097 VW

PO12-5,5'-Indi-N,N'-Ac (12)

File l	Name	G:\JA	G:\JAPO\ACETYLIERTEINDIGOS.CSV Date				Date 18 Mar 2007 20:30:52						
Tech	nique	UV-V	'isible	S	pectral Re	aion UV-	Vis-NIR	X Axis	١	Navelength (nanometers)		
Y Ax	is	Arbitr	ary	S	pectrum F	Range 200	.0000 - 800.0	0000		y .			
Poin	ts Coun	t 601		D	ata Spaci	ng 1.00	000						
		289		•		-							
0.7							- +				+		
0.7				I.									
0.6	5												
0.6	60			·					;				
			1	l	 		 	 l	 	 	 		
0.5	55			I.					I.				
~ -				·	+				!				
0.5	<u>0</u>			l.									
04	5 0	4	- +	·	+								
0	53	43											
0.4	10	/		·			- +						
		/		I.					L L				
0.3	85			 I	T		- T		_I	Г — — Г — — — — — — — — — — — — — — — —			
1				!					 	 			
0.3	80												
ary													
12 0.2 Q	25 <u>-</u>			345									
₹ 02	20			· _ [<u>+</u>					·	<u>-</u>		
0.2									l L				
0.1	5			·	\		- +			+			
				I.						3∕ Ç			
0.1	0			·			- +				+		
			 					/					
0.0)5			i									
0.0									l				
0.0		1		I I					l I				
-0.0)5			<u> </u>					^I				
-0.1	10			·					!				·
				l								, , ,	
-0.1	15			i i					i L				
	- +				+		- +			· +			
-0.2	20 <u>∃</u>						+++++++++++++++++++++++++++++++++++++++			· · · · · · · · · · · · · · · · · · ·			$\frac{1}{1}$
	250	30	0	350	40	0	450	500	550	600	650	700	750
				<u> </u>		_	Waveleng	th (nm)					
No	nm	Arbitrary	FWHH	Asym	Intensity	1							
1	203.00	0.398	0.71	-0.15	S	4							
2	212.00	0.380	-	-	S	4							
3	217.00	0.255	1.04	-0.63	M	4							
4	220.00	0.301	-	-	M	4							
D G	225.00	0.426	1.99	-0.61	5 ¢	-							
7	230.00	0.298	-	-	2 2	-							
8	289.00	0.697	55.59	-0.17	VS	-							
9	345.00	0.188	-	-	M	1							
10	570.00	0.083	105.63	-0.41	M	1							

PO12-6,6'-Indi-N,N'-Ac (13)

Calculation of the Order Parameter S:

Figure 1: Wide angle diffractogram of the LC phases of **24**. Left: SmA-phase at 144 °C (irradiation: 20 min, cooled from 148 °C with 0.2 K/min), right: N-phase at 148 °C (irradiation: 15 min, cooled from 155 °C with 0.2 K/min).

Figure 2: Integration of circular sectors of the diffractogram in Figure 1 left (SmA-phase of **24**) in the small angle area (left) and in the wide angle area (right).

Figure 3: Integration of circular sectors of the diffractogram in Figure 1 right (N-phase of **24**) in the small angle area (left) and in the wide angle area (right).

The order parameter S was calculated from the wide angle diffractograms according to the method of Davidson *et al.*^[2] Both sides of each wide angle diffractogram (**Figure 2**, right and **Figure 3**, right) were added and the minimum value was set to zero. (**Figure 4**). The intensity profile $I(\chi)$ was fitted to equation 1.

$$I(\chi) = \sum_{n=0}^{\infty} \frac{f_{2n} 2^n n!}{(2n+1)!!} \cos^{2n}(\chi) = f_0 + \frac{2}{3} f_2 \cos^2 \chi + \frac{8}{15} f_4 \cos^4 \chi + \frac{16}{35} f_6 \cos^6 \chi + \dots$$
(1)

Figure 4: Averaged intensity profile $I(\chi)$ from the wide angle reflexes of the LC phases of **24** (left: SmA phase, right N-phase) each with the fit graph of function 1.

Table 1: Fit parameters f_{2n} of the LC phases of **24** and the calculated orderparameters S.

	f_0	f_2	f_4	f_6	S
SmA (144 °C)	0.00443	23.3065	17.30246	65.0806	0.54956
N (148 °C)	0.01574	132.12652	83.47749	55.55415	0.47239

The received fit parameters f_{2n} (**Table 1**) were introduced in the Legendre-polynome (2) of the distribution function and the order parameter was calculated according to equation 3.

$$\left\langle \cos^2 \theta \right\rangle = \frac{\sum_{n=0}^{\infty} \frac{1}{2n+3} f_{2n}}{\sum_{n=0}^{\infty} \frac{1}{2n+1} f_{2n}} = \frac{\frac{1}{3} f_0 + \frac{1}{5} f_2 + \frac{1}{7} f_4 + \frac{1}{9} f_6 + \dots}{f_0 + \frac{1}{3} f_2 + \frac{1}{5} f_4 + \frac{1}{7} f_6 + \dots}$$
(2)

$$S = \frac{1}{2} \left(3 \left\langle \cos^2 \theta \right\rangle - 1 \right) \tag{3}$$

33

Quantum mechanical Calculations (DFT):

The geometies and energies of all compounds were computed in Gaussian $03^{[3]}$ on a DFT level of theory with the B3LYP density functional^[4] and the 6-311G(d) basis set. The energetic and atomic parameters are summarized in **Table 3** (*N*,*N*⁴-diacetyl indigo in the "twisted"C₂-symmetric conformation), **Table 4** (*N*,*N*⁴-diacetyl indigo in the "stepped" C₁-symmetric conformation), **Table 5** (5,5'-bis-(4-ethylphenyl)-*N*,*N*⁴-diacetyl indigo in C₂-symmetry), **Table 6** (5,5'-bis-(4-methoxyphenyl)-*N*,*N*⁴-diacetyl indigo in C₂-symmetry), **Table 7** (6,6'-bis-(4-ethylphenyl)-*N*,*N*⁴-diacetyl indigo in C₂-symmetry).

The energetic difference ΔH was for the total energy and the sum of electronic and zero-point Energies and are presented in **Table 2**. A conversion factor of 2625.50 was used to conver Hartree into kJ/mol.

Table 2: Energy differences between the C_2 and the C_i symmetric conformer of *N*,*N*'-diacetyl indigo.

	C ₂	C _i	∆H [Hartree]	$\Delta H [kJ/mol]$
Total energy	-1181,24424516	-1181,23155204	0.01269312	33.326
sum of electronic and ZP energies	-1180,944413	-1180,932185	0.012228	32.105

Table 3: Summery of the energetic and atomic parameters of the C2-symmetric conformation of N,N'-diacetyl

indigo (DAIndigo_C2_1_freq.log).

E(RB+HF-LYP) =	-1181,24424516
Sum of electronic and zero-point Energies=	-1180,944413
Sum of electronic and thermal Energies=	-1180,923197
Sum of electronic and thermal Enthalpies=	-1180,922253
Sum of electronic and thermal Free Energies=	-1180,993651
Zero-point correction=	0,299832
(Hartree/Particle)	
Thermal correction to Energy=	0,321048
Thermal correction to Enthalpy=	0,321993
Thermal correction to Gibbs Free Energy=	0,250594
Entropy (cal/mol) =	150,271
Number of imaginary frequencies $= 0$	
Standard orientation:	

Center Number	А	tomic Ato Number	omic Type	Coordinate X Y	es (Angstroms)
1	6	0	1.109957	-2.614190	-0.573133
2	6	0	1.920071	-3.590623	-1.146446
3	6	0	1.358357	-4.829331	-1.429838
4	6	0	0.011547	-5.067269	-1.130846
5	6	0	-0.809125	-4.098064	-0.549640
6	6	0	-0.236042	-2.859615	-0.271307
7	1	0	2.958981	-3.367539	-1.363714
8	1	0	-1.847008	-4.294311	-0.333672

9	6	0	0.143633	-0.666597	0.311164	C2'
10	8	0	-2.517643	0.671681	-0.260808	
11	6	0	-1.452080	1.250114	-0.163681	C3
12	6	0	-1.109957	2.614190	-0.573133	
13	6	0	-0.143633	0.666597	0.311164	C2
14	6	0	0.236042	2.859615	-0.271307	
15	6	0	-1.920071	3.590623	-1.146446	
16	7	0	0.809125	1.702095	0.338848	Ν
17	6	0	0.809125	4.098064	-0.549640	
18	6	0	-1.358357	4.829331	-1.429838	
19	1	0	-2.958981	3.367539	-1.363714	
20	6	0	-0.011547	5.067269	-1.130846	
21	1	0	1.847008	4.294311	-0.333672	
22	6	0	1.452080	-1.250114	-0.163681	
23	8	0	2.517643	-0.671681	-0.260808	
24	7	0	-0.809125	-1.702095	0.338848	
25	6	0	-2.020257	-1.771969	1.083580	
26	6	0	-2.225046	-0.811815	2.232174	
27	1	0	-1.378164	-0.164164	2.448246	
28	1	0	-3.098576	-0.196457	2.021626	
29	1	0	-2.445726	-1.419852	3.111886	
30	8	0	-2.806665	-2.661425	0.863542	
31	6	0	2.020257	1.771969	1.083580	
32	6	0	2.225046	0.811815	2.232174	
33	1	0	3.098576	0.196457	2.021626	
34	1	0	2.445726	1.419852	3.111886	
35	1	0	1.378164	0.164164	2.448246	
36	8	0	2.806665	2.661425	0.863542	
37	1	0	-0.419193	-6.036169	-1.362007	
38	1	0	0.419193	6.036169	-1.362007	
39	1	0	-1.956061	5.609349	-1.888336	
40	1	0	1.956061	-5.609349	-1.888336	

Table 4:Summery of the energetic and atomic parameters of the Ci-symmetric conformation of N,N'-diacetyl

indigo (DAIndigo_Ci_1_freq.log).

E(RB+HF-LYP) =	-1181,23155204
Sum of electronic and zero-point Energies=	-1180,932185
Sum of electronic and thermal Energies=	-1180,910990
Sum of electronic and thermal Enthalpies=	-1180,910046
Sum of electronic and thermal Free Energies=	-1180,982144
Zero-point correction=	0,299367
(Hartree/Particle)	
Thermal correction to Energy=	0,320562
Thermal correction to Enthalpy=	0,321506
Thermal correction to Gibbs Free Energy=	0,249408
Entropy (cal/mol) =	151,743
Number of imaginary frequencies $= 0$	
Standard orientation:	

Center Number	At N	omic Ato Number	omic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	0.814303	0.302780	2.878817
2	6	0	0.823127	0.304681	4.271626
3	6	0	2.050558	0.302983	4.922471
4	6	0	3.235301	0.305755	4.174862
5	6	0	3.238613	0.310862	2.778725
6	6	0	2.002776	0.312590	2.137948
7	1	0	-0.114853	0.304679	4.816436

8	1	0	4.159306	0.307475	2.215242
9	6	0	0.317726	0.174769	0.576530
10	8	0	1.504282	-0.338384	-2.194153
11	6	0	0.314246	-0.287949	-1.947783
12	6	0	-0.814303	-0.302780	-2.878817
13	6	0	-0.317726	-0.174769	-0.576530
14	6	0	-2.002776	-0.312590	-2.137948
15	6	0	-0.823127	-0.304681	-4.271626
16	7	0	-1.707713	-0.369173	-0.743415
17	6	0	-3.238613	-0.310862	-2.778725
18	6	0	-2.050558	-0.302983	-4.922471
19	1	0	0.114853	-0.304679	-4.816436
20	6	0	-3.235301	-0.305755	-4.174862
21	1	0	-4.159306	-0.307475	-2.215242
22	6	0	-0.314246	0.287949	1.947783
23	8	0	-1.504282	0.338384	2.194153
24	7	0	1.707713	0.369173	0.743415
25	6	0	2.632274	1.046698	-0.124555
26	8	0	3.812993	0.850952	0.006724
27	6	0	-2.632274	-1.046698	0.124555
28	6	0	-2.094930	-2.137139	1.020877
29	1	0	-2.467434	-1.985742	2.032531
30	1	0	-2.508396	-3.077947	0.646045
31	1	0	-1.010144	-2.218488	1.038140
32	8	0	-3.812993	-0.850952	-0.006724
33	1	0	2.508396	3.077947	-0.646045
34	6	0	2.094930	2.137139	-1.020877
35	1	0	1.010144	2.218488	-1.038140
36	1	0	2.467434	1.985742	-2.032531
37	1	0	-4.188599	-0.297984	-4.693636
38	1	0	4.188599	0.297984	4.693636
39	1	0	2.096116	0.293307	6.005719
40	1	0	-2.096116	-0.293307	-6.005719

Table 5: Summery of the energetic and atomic parameters of the C2-symmetric conformation of 5,5'-bis-(4-

ethylphenyl)-N,N'-diacetyl indigo (55-DiPhEt-DAIndigo).

E(RB3LYP)= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Zero-point correction=	-1800.74272629 -1800.169811 -1800.132775 -1800.131830 -1800.242324 0.572915
(Hartree/Particle)	0.572915
Thermal correction to Energy=	0.609952
Thermal correction to Enthalpy=	0.610896
Thermal correction to Gibbs Free Energy=	0.500402
Entropy (cal/mol) =	232.554
Number of imaginary frequencies $= 0$	
Standard orientation:	

Center	A	Atomic	Fo	orces (Hartrees/I	30hr)	
Number		Number	Х	Y	Ζ	
1	6	-0.0000)11052	-0.000000713	-0.000	0017728
2	6	0.0000	02173	0.000000143	-0.000	009015
3	6	-0.0000)11692	0.000001013	0.000	008337
4	6	0.0000	04588	-0.000002276	0.000	002010
5	6	0.0000	04703	0.000003661	-0.000	000522
6	6	0.0000	01474	0.000000178	0.000	003005
7	1	0.0000	03088	-0.000000011	0.000	000059

8	1	0.000001718	-0.000003626	-0.000002980
9	6	-0.000008801	0.000005340	-0.000021388
10	8	-0.000002301	0.000006028	0.000009357
11	6	0.000009096	-0.000003646	-0.000021802
12	6	-0.000001782	0.000002437	0.000009180
13	6	-0.000005384	0.000001542	0.000016288
14	6	0.000000537	-0.00000878	-0.00000328
15	6	-0.000004745	0.00000806	-0.000002107
16	7	-0.000004180	-0.000001793	0.000007988
17	6	-0.000002809	-0.000002535	-0.000000414
18	6	0.000011080	-0.000000093	0.000005347
19	1	-0.000001803	-0.00000381	-0.000000280
20	6	-0.000001707	0.000000581	0.000000143
21	1	-0.000000312	0.000001268	-0.000001124
22	6	0.000027236	-0.000011095	0.000060499
23	8	-0.000011097	0.000007658	-0.000019799
24	7	-0.00000878	-0.000004979	0.000005983
25	6	0 000004257	-0.00000808	0.000001145
26	6	-0 000001944	-0.000002241	-0 000009024
27	1	-0.000001473	-0 000003498	-0.000002934
28	1	0.000001106	0.000001945	-0.000000666
29	1	0.000001602	-0.000002094	0.000002246
30	8	-0.000013497	0.000009064	0.000003684
31	6	0.000031152	-0.000011591	-0.000029204
32	6	-0.000008614	0.000007307	-0.000001945
33	1	-0.000003386	-0.000001663	-0.000003123
34	1	-0.000000532	0.000002365	0.0000003125
35	1	0.0000000000000000000000000000000000000	0.000004262	-0.000001383
36	8	-0.000001257	-0.000001477	0.000013788
37	1	0.0000000000000000000000000000000000000	-0.000001477	-0.000013780
38	1	-0.000000785	0.0000000000	-0.000002374
30	6	-0.0000000440	-0.000000010	-0.000000237
40	6	-0.00000000000000000000000000000000000	0.000020282	0.0000017108
41	6	0.000020104	-0.0000023880	0.000001508
41 12	6	0.000017777	-0.00000000000000000000000000000000000	0.0000000000000000000000000000000000000
42	1	0.0000031101	-0.000003128	-0.000019841
Δ <u>Α</u>	6	-0.000001047	0.000017465	0.000010623
77 //5	1	-0.000003330	-0.0000017403	-0.000010023
45 46	6	-0.000002743	-0.0000000381	-0.000001508
40 17	1	-0.000000000000000000000000000000000000	0.000013499	-0.000020317
/ /8	1	0.000004090	-0.000001298	-0.000000241
40 /0	6	0.000001988	-0.000003288	-0.000003107
50	6	-0.000011477	0.000021431	0.000019018
51	6	-0.000021132	-0.000000180	0.000009542
52	6	0.000019917	-0.000024937	0.000002343
52	1	0.000003808	0.000010020	0.000012024
55	6	-0.000001700	0.000001203	0.000000225
55	1	-0.000031100	0.000003441	-0.000019800
56	6	0.000002950	0.000003007	-0.000001047
50	1	0.000034809	0.000017433	-0.000029433
58	1	-0.000002173	0.000004720	-0.000003383
50	6	0.000004133	-0.000001077	-0.0000000003
59 60	6	-0.000013097	0.000018384	0.000037024
61	1	0.000019311	-0.000011001	-0.00001/398
62	1 1	0.000003431	-0.0000081/0	
62	1	0.00000000000	0.000000/31	-0.000012131
64	1	0.00000333/	-0.000001390	-0.000003840
04 65	1	0.000001019	0.000000233	0.000010423
66	1 2	0.000001898	0.000009930	0.000001030
00 67	0	0.000014812	-0.000019202	0.000030292
60	0	0.000019340	0.000012033	-0.00001 / / 81
60	1	-0.000000000000000000000000000000000000	0.000008021	-0.000000933
07	1	-0.000003928	-0.000000324	-0.000011328

70	1	-0.000003497	0.000001469	-0.000003698
71	1	-0.000001035	-0.00000364	0.000010021
72	1	-0.000001975	-0.000010155	0.000001193

Table 6: Summery of the energetic and atomic parameters of the C2-symmetric conformation of 5,5'-bis-(4-

methoxyphenyl)-N,N'-diacetyl indigo (55-DiPhOMe-DAIndigo)

E(RB3LYP)=	-1872.55162178
Sum of electronic and zero-point Energies=	-1872.025987
Sum of electronic and thermal Energies=	-1871.989817
Sum of electronic and thermal Enthalpies=	-1871.988873
Sum of electronic and thermal Free Energies=	-1872.096538
Zero-point correction=	0.525635
(Hartree/Particle)	
Thermal correction to Energy=	0.561805
Thermal correction to Enthalpy=	0.562749
Thermal correction to Gibbs Free Energy=	0.455083
Entropy (cal/mol)=	226.601
Number of imaginary frequencies $= 0$	
Standard orientation:	

Center	Ato	mic	Fo	rces (Hartree	s/Bohr)	
Number	Nı	umber	Х	Y	Z	
1	6	0.0000	03709	0.00000505	8 -0.0	00000264
2	6	-0.0000	02477	-0.00000174	45 -0.0	00002358
3	6	-0.0000	01041	0.00000389	0.0	00000754
4	6	0.0000	00317	0.00000079	8 -0.0	00000261
5	6	-0.0000	03743	-0.00000229	95 0.0	00003352
6	6	-0.0000	01007	0.00000434	8 -0.0	00002665
7	1	0.0000	00908	0.00000053	3 0.00	00000899
8	1	0.0000	00062	0.00000218	7 0.00	00000090
9	6	0.0000	11293	0.00000140	9 0.00	00003719
10	8	-0.000	001446	-0.0000063	71 -0.0	000001364
11	6	0.0000	04889	0.00000732	75 0.0	00002312
12	6	-0.000	004671	-0.0000051	32 -0.0	000002233
13	6	-0.000	006391	0.0000041	73 -0.0)00005056
14	6	0.0000	04359	-0.0000017	89 -0.0	00000178
15	6	0.0000	002833	0.0000013	14 -0.0	00000320
16	7	-0.000	004171	0.0000019	95 0.0	00001813
17	6	0.0000	001347	0.00000100	0.0 0.0	00001308
18	6	0.0000	000097	-0.000038	29 -0.0	00000722
19	1	-0.000	000954	-0.0000008	42 0.0	00000554
20	6	0.0000	000183	-0.0000008	82 0.0	00000773
21	1	0.0000	001255	-0.0000025	52 0.0	00000337
22	6	-0.000	006151	-0.0000011	82 -0.0	000003073
23	8	0.0000	004364	-0.0000001	18 -0.0	00002759
24	7	-0.000	001634	-0.0000101	77 0.0	000007235
25	6	-0.000	007676	0.0000187	13 -0.0)00009529
26	6	0.0000	003025	-0.000030	32 0.0	000003116
27	1	0.0000	000179	-0.0000000	97 -0.0	00000328
28	1	-0.000	000931	-0.0000004	18 0.0	00000255
29	1	-0.000	001797	0.0000000	34 0.0	00000308
30	8	0.0000	02989	-0.0000091	76 0.0	00001358
31	6	-0.000	002976	-0.0000083	56 0.0	000001649
32	6	0.0000	002248	0.0000022	72 0.0	00001923
33	1	0.0000	000024	-0.0000005	66 0.0	00001073
34	1	0.0000	000638	-0.0000006	50 -0.0)00000366
35	1	-0.000	000406	0.0000000	08 -0.0	00000325
36	8	0.0000	001292	0.00000449	94 -0.0	000002149
37	1	0.0000	000083	0.0000011	17 0.0	00000193

38	1	0.000000171	-0.000001457	0.00000346
39	6	-0.000002015	-0.000005615	-0.000002939
40	6	-0.00000327	0.000004146	0.000001545
41	6	0.000006282	-0.000000613	0.000001943
42	6	0.000006280	-0.000003094	0.000002261
43	1	0.000000059	-0.000002016	0.00000246
44	6	-0.000005338	0.000006509	0.00000087
45	1	-0.00000085	-0.000002705	0.000000296
46	6	0.000001544	-0.000011412	0.000003642
47	1	-0.000001787	-0.000002219	-0.000001212
48	1	0.000001952	-0.000004283	0.000000573
49	6	0.000003557	0.000001803	-0.000001483
50	6	-0.000005183	0.000002269	-0.00000291
51	6	0.00000320	-0.000001768	0.000003347
52	6	0.000004448	-0.000007794	0.000000715
53	1	0.00000327	0.000002493	0.000000109
54	6	-0.000001474	0.000005594	0.000001063
55	1	-0.00000867	0.000002125	0.000000444
56	6	-0.000002932	0.000005719	-0.00000297
57	1	-0.000001038	0.000005436	0.00000688
58	1	0.000001452	0.000001876	-0.000001108
59	6	-0.000001658	0.000007900	-0.000011030
60	1	0.000002746	0.000001815	0.000000453
61	1	0.000001334	0.000002524	0.000002105
62	1	0.00000814	0.000000074	0.000003640
63	6	0.00000023	-0.000006008	-0.000008066
64	1	-0.000002446	-0.000001702	-0.000000646
65	1	-0.000000945	-0.000002708	0.000001906
66	1	-0.000000971	0.00000087	0.000002167
67	8	0.000000604	0.000000043	0.000001950
68	8	-0.000003464	0.000001458	-0.000001524

Table 7: Summery of the energetic and atomic parameters of the C₂-symmetric conformation of 6,6'-bis-(4-ethylphenyl)-*N*,*N*'-diacetyl indigo (66-DiPhEt-DAIndigo).

E(RB3LYP)=	-1800.74452635
Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies=	-1800.171571 -1800.134472 -1800.133527
Sum of electronic and thermal Entitlapies Sum of electronic and thermal Free Energies= Zero-point correction=	-1800.244653 0.572955
(Hartree/Particle) Thermal correction to Energy=	0.610055
Thermal correction to Entitalpy– Thermal correction to Gibbs Free Energy= Entropy (cal/mol)=	0.499873 233.885
Number of imaginary frequencies = 0 Standard orientation:	

Center	A	tomic	Fo	rces (Hartrees/E	Bohr)	
Number		Number	Х	Y	Ζ	
1	6	0.0000	09876	-0.000004739	0.000	001153
2	6	-0.0000	004858	0.000000409	0.000	002857
3	6	0.0000	05059	0.00000733	-0.000	000527
4	6	-0.0000)11236	0.000002303	-0.000	005564
5	6	0.0000	03006	-0.000003984	0.000	003588
6	6	-0.0000	002327	0.000002905	-0.000	001677
7	1	-0.0000	000194	-0.000000414	-0.000	001598

8	1	0.000001864	0.000001233	0.000000050
9	6	0.000000594	0.000001200	0.000001168
10	8	-0.000004876	0.000003789	-0.000003219
11	6	0.000010468	-0.000005295	0.000006129
12	6	-0.000012275	0.000004026	-0.000003936
13	6	0.00000353	-0.00000817	-0.000000092
14	6	0.000003200	-0.000002570	0.000001064
15	6	0.000005143	-0.000000885	0.000001142
16	7	-0.00000862	0.000008078	-0.000002860
17	6	-0.000001567	0.000004682	0.000003461
18	6	-0.000005176	-0.00000230	-0.000000538
19	1	0.00000390	0.000000488	-0.000001537
20	6	0.000011355	-0.000002204	-0.000004498
21	1	-0.000002173	-0.000000487	-0.000000974
22	6	-0.000005044	0.000007572	-0.000009513
23	8	0.000003898	-0.000005120	0.000007120
24	7	0.000002450	-0.000007327	-0.000005286
25	6	-0.000019158	-0 000004806	0.000019557
26	6	0.000004415	0.000005481	-0.000000786
27	1	-0.000000911	-0.000000387	-0.000001051
28	1	0.000002054	-0.000000045	0.000002250
29	1	-0.0000002031	0.000000610	-0.000002230
30	8	0.000006823	0.000000181	-0.000002511
31	6	0.000003689	-0.000013162	-0.000003325
32	6	0.0000000086	0.0000010102	-0.000000000000000000000000000000000000
33	1	-0.0000000000	-0.000002095	-0.00000010596
34	1	-0.0000001107	-0.000001259	-0.000000000000000000000000000000000000
35	1	0.0000000410	0.000001255	-0.0000001049
36	8	-0.000000173	0.000002430	0.0000000000000000000000000000000000000
37	1	-0.000001991	0.0000000000000000000000000000000000000	0.000002014
38	1	0.000002001	-0.000002820	0.000001400
30	6	-0.000002100	-0.000002851	0.000001414
40	6	-0.00000000000000000000000000000000000	0.000004317	-0.000014904
40 //1	6	0.000013027	0.000007127	-0.000000000000000000000000000000000000
41 12	6	0.000014489	-0.000002237	-0.000007380
42	1	0.000017087	0.000000302	0.000010958
η <u>σ</u> ΛΛ	6	-0.000002700	0.0000000000000000000000000000000000000	-0.000001037
44 15	1	-0.000011409	-0.000007330	0.0000000000000000000000000000000000000
45 46	6	-0.000001323	-0.000000341	0.000000508
40 17	1	-0.000011555	0.0000003774	0.000013447
47 18	1	0.000002303	0.000001778	0.000001701
40	6	0.000002490	0.000001010	0.000001790
50	6	-0.000007920	-0.000004800	-0.000010344
51	6	-0.000010142	-0.000002278	-0.000008701
52	6	0.000014447	-0.000007803	-0.000005054
52	1	0.000012081	0.0000000027	0.000000298
55	6	0.000001354	0.000000000000071	0.000000407
55	1	-0.000018002	-0.0000000971	0.000012328
56	6	0.000002380	0.000000230	0.000001145
50	1	0.000011914	0.00000000000	0.000017980
59	1	-0.000002098	-0.000000990	0.000001743
50	6	-0.000002493	0.000001909	-0.000001708
59 60	6	-0.000013819	0.000003213	0.000009013
61	1	0.000000971	-0.000003233	0.000000823
62	1	0.000002733	-0.000001271	0.0000000000000000000000000000000000000
62	1 1	0.000003127		0.000001233
6 <i>1</i>	1	0.000001100	0.000004701	0.000000227
65	1 1		0.000001249	-0.000002105
66	1	0.000001904		-0.000002083
67	6		0.000003328	0.000008/33
68	1		0.000003134	0.000001078
60	1	-0.000002/11	0.000001010	0.000004122
いブ	1	-0.000000000000000000000000000000000000	0.00000300/	0.000001033

70	1	-0.000001140	0.000004679	0.00000394
71	1	-0.000000418	-0.000001280	0.000002104
72	1	0.000002108	-0.000000421	-0.000002678

Table 8: Summery of the energetic and atomic parameters of the C2-symmetric conformation of 6,6'-bis-(4-

methoxyphenyl)-N,N'-diacetyl indigo (66-DiPhOMe-DAIndigo).

E(RB3LYP)=	-1872.55412215
Sum of electronic and zero-point Energies=	-1872.028167
Sum of electronic and thermal Energies=	-1871.992080
Sum of electronic and thermal Enthalpies=	-1871.991136
Sum of electronic and thermal Free Energies=	-1872.098429
Zero-point correction=	0.525956
(Hartree/Particle)	
Thermal correction to Energy=	0.562042
Thermal correction to Enthalpy=	0.562986
Thermal correction to Gibbs Free Energy=	0.455693
Entropy (cal/mol)=	225.817
Number of imaginary frequencies $= 0$	
Standard orientation:	

Number Number X Y Z 1 6 -0.000002506 0.000002559 -0.000004834 2 6 0.000002009 0.000001894 -0.000003401 3 6 -0.000001561 -0.000007924 0.000000833 4 6 0.00000382 -0.000002136 -0.000000762 5 6 0.000000768 -0.000001461 0.000004163 6 -0.000000735 -0.000000581 0.000000427 8 1 -0.000003470 -0.000002111 -0.00000933 9 6 -0.000004276 -0.000009318 0.00000334 10 8 0.000003545 -0.000001977 0.00001102	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 6 0.000002009 0.000001894 -0.000003401 3 6 -0.000001561 -0.000007924 0.000000833 4 6 0.000011708 0.000004698 -0.000000762 5 6 0.000000768 -0.000001161 0.0000041163 6 6 -0.000000768 -0.000001461 0.0000041163 7 1 0.000000735 -0.000000581 0.000000427 8 1 -0.000003470 -0.000002111 -0.000000334 9 6 -0.000004276 -0.000009318 0.000000334 10 8 0.000003545 -0.000001977 0.00001102	4
3 6 -0.000001561 -0.000007924 0.00000083: 4 6 0.000011708 0.000004698 -0.00000762 5 6 0.00000382 -0.000002136 -0.000004163 6 6 -0.00000768 -0.000001461 0.000004116 7 1 0.00000735 -0.00000581 0.000000427 8 1 -0.000003470 -0.000002111 -0.00000933 9 6 -0.000004276 -0.000009318 0.00000334 10 8 0.000003545 -0.000001977 0.00001102	l
4 6 0.000011708 0.000004698 -0.00000762 5 6 0.000000382 -0.000002136 -0.000004163 6 6 -0.00000768 -0.000001461 0.000004116 7 1 0.00000735 -0.00000581 0.000000427 8 1 -0.000003470 -0.000002111 -0.00000933 9 6 -0.000004276 -0.000009318 0.00000334 10 8 0.000003545 -0.000001977 0.00001102	5
5 6 0.00000382 -0.000002136 -0.00000416: 6 6 -0.00000768 -0.000001461 0.000004110 7 1 0.00000735 -0.00000581 0.00000427 8 1 -0.000003470 -0.000002111 -0.00000933 9 6 -0.000004276 -0.000009318 0.00000334 10 8 0.000003545 -0.000001977 0.00001102	2
6 6 -0.000000768 -0.000001461 0.000004110 7 1 0.000000735 -0.000000581 0.000000427 8 1 -0.000003470 -0.000002111 -0.00000933 9 6 -0.000004276 -0.000009318 0.00000334 10 8 0.000003545 -0.000001977 0.00001102	5
7 1 0.000000735 -0.000000581 0.000000427 8 1 -0.000003470 -0.000002111 -0.00000933 9 6 -0.000004276 -0.000009318 0.000000334 10 8 0.000003545 -0.000001977 0.00001102	0
8 1 -0.000003470 -0.000002111 -0.00000093. 9 6 -0.000004276 -0.000009318 0.00000334 10 8 0.000003545 -0.000001977 0.00001102	7
9 6 -0.000004276 -0.000009318 0.00000334 10 8 0.000003545 -0.000001977 0.00001102	5
10 8 0.000003545 -0.000001977 0.00001102	4
	6
11 6 -0.000010921 0.000000943 -0.00001760	18
12 6 0.000003240 -0.000001119 0.00000233	7
13 6 0.000005398 0.000010437 -0.00000252	4
14 6 -0.000005056 0.000001000 -0.00000077	4
15 6 -0.000000529 0.000000519 0.00000405	5
16 7 -0.000000019 0.000000451 0.00000084	1
17 6 -0.000001258 0.000004915 0.00000117	8
18 6 0.000002799 0.000001890 0.00000027	7
19 1 -0.000000693 0.000000432 -0.00000129	15
20 6 -0.000001483 -0.000003142 -0.00000546	59
21 1 0.000000778 -0.000000754 0.00000242	1
22 6 -0.000004307 -0.000004717 0.00001962	6
23 8 0.000002943 0.000004868 -0.00001103	0
24 7 0.000001308 0.000008453 0.00000057	5
25 6 0.000001803 -0.000010058 -0.00000377	0
26 6 -0.000001116 -0.000002043 -0.00000769)4
27 1 0.000002431 -0.000000280 0.00000462	7
28 1 -0.000002213 0.000001476 -0.00000165	5
29 1 0.00000096 -0.000002194 0.00000305	0
30 8 0.00000335 0.000005369 0.000002536	6
31 6 0.00008730 -0.000004039 0.00000920	0
32 6 -0.000005795 0.000002652 0.00000213	7
33 1 0.00000886 -0.000001321 0.00000072	7
34 1 0.00000040 0.00000077 -0.00000009	0
35 1 0.000001784 -0.000001863 -0.00000444	3
36 8 -0.000001908 0.000001396 -0.00000644	9
37 1 -0.000002835 0.000001229 0.00000330	5

39 6	0.000001783	0.000006000	
	0.000001/02	-0.000006882	0.000015265
40 6	-0.000004977	0.000003979	-0.000003912
41 6	0.000011946	0.000002886	-0.000006145
42 6	0.000001441	-0.000001266	-0.000001111
43 1	-0.000000468	0.000000020	-0.00000080
44 6	-0.000006127	0.000005375	-0.000002247
45 1	-0.000002263	-0.000000268	0.000000294
46 6	0.000005328	-0.000001002	0.000006167
47 1	-0.00000308	0.000001634	-0.000000058
48 1	0.000001662	-0.000001236	0.000002902
49 6	-0.000011572	0.000005065	0.000011604
50 6	-0.000005416	-0.000001325	-0.000011950
51 6	0.000009472	-0.000006552	-0.000004962
52 6	0.000014231	-0.000007111	-0.000003666
53 1	0.000002798	0.000000270	0.000002195
54 6	-0.000008686	0.000000891	-0.000008262
55 1	0.000001372	-0.000001783	0.00000838
56 6	-0.000001787	0.000000959	0.000017857
57 1	-0.000001978	0.000000428	0.000002096
58 1	0.000001047	-0.000002940	0.000001091
59 6	-0.000004554	-0.000001319	0.000002913
60 1	-0.000001338	-0.000000170	-0.000001967
61 1	-0.000000992	0.000001165	-0.000002470
62 1	0.000002583	-0.000000932	-0.000001203
63 6	0.000002816	0.000007964	0.000009737
64 1	0.000002465	-0.000000013	-0.000001788
65 1	-0.000001852	-0.000000168	-0.000004592
66 1	-0.000002511	-0.00000253	-0.000000219
67 8	0.000000488	-0.000001494	-0.000009423
68 8	-0.000004524	0.000005004	-0.000004869

Calculation of the p-Orbital Alignment Vectors:

The p-orbital axis vector (POAV) analysis as introduced by $Haddon^{[5]}$ is a powerful tool for the description of pyramidalized atoms with hybridization between sp² and sp³ providing the angle of pyramidalization and the degree of hybridization in terms of spⁿ.

The POAV1 is definded to originate in the central atom and to have equal angles $\ge 90^{\circ}$ to the vectors of all three surrounding atoms. For a perfect sp² hybridized atom this angle is 90°, whereas it is the tetrahedral angle of 109.47 for a perfect sp³ hybridized atom.

However the POAV1 theory assumes an equal σ -bond hybridisation in C_{3v} symmetry and may lead to significant deviations of the actual hybridization, when the bond angles θ_{ij} to the surrounding atoms substantially differ.^[5a] This case is given for the here examined indigoid structures and a more accurate description is obtained from the POAV2 theory, which treats the σ -bond hydridisations individually.^[5a]

In order to be able to measure the dihedral angle between two POAVs within a structure dummy atoms were placed along these vectors in an arbitrary distance of 1 Å. The procedure which gave the x, y, z coordinates of this dummy atom, according to POAV1 and POAV2 theory, was implemented into an Excel worksheet and is outlined below examplary for the C2 carbon of the calculated structure of N,N'-diacetyl indigo with C₂ symmetry. The x, y and z coordinates of the central atom and the three surrounding atoms were gathered (see table DAIndigo_C2_1_freq.log, atoms 9 (C2'), 11 (C3), 16 (N) and 13 (C2)):

Example:						
ato	m	Х	у	Z		
1	(C2')	0.14363	-0.6666	0.31116		
2	(C3)	-1.45208	1.25011	-0.16368		
3	(N)	0.80912	1.70209	0.33885		
center	(C2)	-0.14363	0.6666	0.31116		

By substracting the x_c , y_c , and z_c values of the center form the x_i , y_i and z_i values of the atoms 1, 2 and 3 the center was shifted to the origin and the magnitude $\|\vec{V}_i\|$ of the resulting vectors was calculated according to:

$$\|\vec{\mathbf{V}}_{i}\| = \sqrt{x_{i}^{2} + y_{i}^{2} + z_{i}^{2}}$$
(4)

Example:

vector (from center)	Х	У	Z	magnitude
V1	0.28726	-1.3332	0	1.3637964
V2	-1.30845	0.58351	-0.47484	1.5093039
V3	0.95275	1.03549	0.02769	1.4073872

The vectors were normalized by dividing the x_i , y_i and z_i values by the corresponding magnitudes $\|\vec{V}_i\|$ and were written in the following matrix representation:

$$\vec{V}_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$
(5)

Example:

normalized vectors	V1	V2	V3
Х	0.2106326	-0.977565	0
у	-0.866923	0.386609	-0.314609
Z	0.6769636	0.735753	0.0196748

The POAV1 is obtained from the following relation:^[5c]

$$\overrightarrow{V_{\pi}} = \frac{(\overrightarrow{V_2} - \overrightarrow{V_1}) \times (\overrightarrow{V_3} - \overrightarrow{V_1})}{\|(\overrightarrow{V_2} - \overrightarrow{V_1}) \times (\overrightarrow{V_3} - \overrightarrow{V_1})\|} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{\|\overrightarrow{a} \times \overrightarrow{b}\|}$$
(6)

First \vec{V}_1 was subtracted from \vec{V}_2 or \vec{V}_3 , giving \vec{a} or \vec{b} , respectively. Then the cross product between \vec{a} and \vec{b} was fromed according to:

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \times \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$
(7)

The magnitude of the resulting vector was calculated by:

$$\|\vec{a} \times \vec{b}\| = \sqrt{(a_y b_z - a_z b_y)^2 + (a_z b_x - a_x b_z)^2 + (a_z b_x - a_x b_z)^2}$$
(8)

Normalizing by dividing the x_i, y_i and z_i values of the cross product $\vec{a} \times \vec{b}$ by its magnitude $\|\vec{a} \times \vec{b}\|$ directly gave the POAV1.

Example:

	a (V2 - V1)	b (V3 - V1)	a × b	$\overrightarrow{V_{\pi}}$
х	-1.07756	0.466331	0.565865	0.22198
у	1.36417	1.7133187	-0.12551	-0.0492
Z	-0.31461	0.0196748	-2.48235	-0.9738
magnitude	1.76666	1.775757	2.549123	1

The angle $\theta_{\sigma\pi}$ between the POAV1 and all three vectors of the surrounding atoms was calculated and checked to be equal according to:^[5c]

$$\theta_{\sigma_i \pi} = \cos^{-1} \left(\frac{\begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} \begin{bmatrix} x_\pi \\ y_\pi \\ z_\pi \end{bmatrix}}{\|\vec{V}_i\| \cdot \|\vec{V}_\pi\|} \right)$$
(9)

Example:				
angle check	$\cos \theta_{\sigma\pi}$	rad	degrees	Neg. Scalar
V1-p-Orbital	0.0948894	1.475764	84.555	95.445
V2-p-Orbital	0.0948894	1.475764	84.555	
V3-p-Orbital	0.0948894	1.475764	84.555	

When the angle turned out to be $< 90^{\circ}$ (as in the example) the scalar product was multiplied with -1.

The pyramidalisation θ was determined as $(\theta_{\sigma\pi}-90)^\circ$

The degree of hydridization (POAV1) of the π -orbital (s^mp) was calculated with:^[5c]

$$m = 2\cos^2(\theta_{\sigma\pi})/(1 - 3\cos^2(\theta_{\sigma\pi})) \tag{10}$$

The average degree of hydridization of the σ -orbital (spⁿ) was calculated with:^[5c]

$$\bar{n} = 3m + 2 \tag{11}$$

The x, y and z coordinates for the POAV1-dummy atom were obtained after shifting the vector or its negative (in the case of an initial $\theta_{\sigma\pi} < 90^{\circ}$, as in the example) back to the central atom by adding the x_c, y_c, and z_c values of the center.

Example:						
POAV1-dummy	Х	у	Z			
vector	-0.22198	0.049237	0.973806			
shifted	-0.3656	0.7158	1.2850			

For the parameters of the POAV2 theory first the cosine of the angle θ_{ij} between all combinations of the normalized vectors V₁, V2 and V3 were calculated according to:

$$\cos \theta_{ij} = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} \cdot \begin{bmatrix} x_j \\ y_j \\ z_j \end{bmatrix}$$
(12)

Example:

angle	V1-V2	V2-V3	V3-V1
cos	-0.560537	-0.308616	-0.576656
rad	2.165831	1.884534	2.1854265
degree	124.09297	107.9759	125.21571

The relation of the POAV2 to the vectors of the neighbouring atoms can be expressed in a set of linear homogenious equations:^[5a]

$$(x_{3}\cos\theta_{12} - x_{2}\cos\theta_{31})x_{\pi} + (y_{3}\cos\theta_{12} - y_{2}\cos\theta_{31})y_{\pi} + (z_{3}\cos\theta_{12} - z_{2}\cos\theta_{31})z_{\pi} = 0$$

$$(x_{1}\cos\theta_{23} - x_{3}\cos\theta_{12})x_{\pi} + (y_{1}\cos\theta_{23} - y_{3}\cos\theta_{12})y_{\pi} + (z_{1}\cos\theta_{23} - z_{3}\cos\theta_{12})z_{\pi} = 0$$

$$(x_{2}\cos\theta_{13} - x_{1}\cos\theta_{23})x_{\pi} + (y_{2}\cos\theta_{13} - y_{1}\cos\theta_{23})y_{\pi} + (z_{2}\cos\theta_{13} - z_{1}\cos\theta_{23})z_{\pi} = 0$$
(13)

The constants in each equation were summarised in the form:

$$a_i x_{\pi} + b_i y_{\pi} + c_i z_{\pi} = 0 \tag{14}$$

Example:

	а	b	с
Eq. 1	-0.87938	-0.189477	-0.19245
Eq. 2	0.3144588	0.71411	0.0110284
Eq. 3	0.5649213	-0.524633	0.1814211

One equation was solved for x_{π} in dependence of y_{π} and z_{π} and the result was substituted in another equation which was then solved for y_{π} in dependence of z_{π} , yielding the following relations:

$$x_{\pi} = -\frac{(b_i y_{\pi} + c_i z_{\pi})}{a_i}$$
 (15) and $y_{\pi} = \frac{(a_i c_j - a_j c_i)}{(a_j b_i - a_i b_j)} z_{\pi}$ (16)

By setting z_{π} to a constant value y_{π} and x_{π} may be obtained. In order to assure that the POAV2 points in the same direction as the POAV1 the z-coordinate of the POAV1 vector was used as the constant value for z_{π} .

The result was checked for consistency by solving for all combinations of the initial equations and the resultant vector was normalized.

Example:			
Eq. 1&2		Z=Z(POAV1)	normed
x = -(b1y+c1z)/a1	X=	0.23187441	0.23076
y = z(a1c2-a2c1)/(a2b1-a1b2)	Y=	-0.087067	-0.08665
	Z=	-0.9738064	-0.96914
	magnitude	1.00481104	1

Eq. 1&3		Z=Z(POAV1)	normed
x = -(b1y+c1z)/a1	X=	0.23187441	0.23076
y = z(a1c3-a3c1)/(a3b1-a1b3)	Y=	-0.087067	-0.08665
	Z=	-0.9738064	-0.96914
	magnitude	1.00481104	1

Eq. 2&3		Z=Z(POAV1)	normed
x = -(b2y+c2z)/a2	X=	0.23187441	0.23076
y = z(a2c3-a3c2)/(a3b2-a2b3)	Y=	-0.087067	-0.08665
	Z=	-0.9738064	-0.96914
	magnitude	1.00481104	1

The x, y and z coordinates for the POAV2-dummy atom were obtained after shifting the vector or its negative (in the case of an initial $\theta_{\sigma\pi} < 90^{\circ}$, as in the example) back to the central atom by adding the x_c, y_c, and z_c values of the center.

Example:

POAV2-dummy	х	у	Z
vector	-0.23076	0.08665	0.96914
shifted	-0.37439	0.75325	1.28030

The POAV2 theory yields the individual σ -bond hybridizations (spⁿ) through the following relations:^[5a]

$$n_1 = \lambda_1^2 = \frac{-(\cos\theta_{23})}{\cos\theta_{12}\cos\theta_{13}}, \qquad n_2 = \lambda_2^2 = \frac{-(\cos\theta_{13})}{\cos\theta_{12}\cos\theta_{23}}, \qquad n_3 = \lambda_3^2 = \frac{-(\cos\theta_{12})}{\cos\theta_{13}\cos\theta_{23}}$$
(17)

With $S(\lambda_{\sigma}) = \sum_{i=1}^{3} \frac{1}{1+\lambda_i^2}$ and the normalization requirement of the s content in the four hybrids $S(\lambda_{\sigma}) + \frac{1}{1+\lambda_{\pi}^2} = 1$ the p-orbital hybridization s^mp may be obtained according to:

$$m = \frac{1}{\lambda_{\pi}^2} = S(\lambda_{\sigma})^{-1} - 1$$
 (18)

Example:

	1	2	3	Sum	
n	0.9547667	3.333446	3.149695		
lambda	0.9771216	1.825773	1.774738		
1/(1+n)	0.51157	0.230763	0.2409816	0.9833148	
(lambda pi)^2					58.933268
m					0.0169683

Complete list of determined angles and distances:

The POAV1 and POAV2 analysis was applied to the C2, C3, C8 and the N atom and their symmetric counterparts for the computed C_i and C₂ symmetric unsubstituted *N*,*N*'-diacetylindigo compounds with 4ethylpheny (PhEt) and 4-methoxyphenyl (PhOMe) substituents as well as the X-ray crystallographic determined molecular structures of *N*,*N*'-diacetylindigo (published by *Grimme*)^[6] and the 5,5'- and 6,6'-bis-substituted *N*,*N*'-diacetylindigo compounds **12** and **23**. The definitions of the center atom and their surrounding neighbor atoms 1, 2 and 3 are given in **Table 9**. The primary data of the POAV1 and POAV2 analysis is complied in **Table 10** and Table 11. Finally, Table 12 summerises all measured distances and angles which were obtained after introduction of the POAV1 and POAV2 dummy atoms in the computed or X-ray crystallographic determined molecular structures.

Table 9:Definition of the center atoms and the three surrounding atoms on which the POAV analysis was applied.

Center	C2	C2'	N	N'	C3	C3'	C8	C8'	O(3) 9' O ^{(8)'}
Atom 1	C2'	C2	C2	C2'	C2	C2'	С9	C9'	$\begin{array}{c} 4 \\ 5 \\ 3a \\ 2 \\ 2' \\ 3 \\ 2' \\ 2' \\ 3 \\ 2' \\ 3 \\ 3 \\ 2' \\ 3 \\ 2' \\ 3 \\ 3 \\ 3 \\ 2' \\ 3 \\ 3 \\ 3 \\ 2' \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $
Atom 2	C3	C3'	C7a	C7a'	O(3)	O(3)'	Ν	N'	$\begin{array}{c} 6 \\ 7 \\ 7 \\ 7 \\ 8 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7$
Atom 3	N	N'	C8	C8'	C3a	C3a'	O(8)	O(8)'	O(8)

		POAV1																				
		neigl	nboring ato	ms													Р	OAV2				
Structure			angle	es, degree				-	dun	nmy atom po	sition		angles, c	legree						dur	nmy atom po	sition
	Center																					
		θ_{12}	θ_{23}	θ_{31}	$\theta_{\sigma\pi}$	Pyr.	ñ	т	Х	У	z r	POAV1	$\theta_{\sigma 1\pi}$	$\theta_{\sigma 2\pi}$	$\theta_{\sigma 3\pi}$	n_I	n_2	<i>n</i> ₃	т	Х	у	z r
N,N'-	C2	126.23	107.05	126.44	91.71	1.71	2.005	0.00178	-0.17295	-1.14773	-0.39659 1	0.79	92.50	91.23	91.24	0.835	3.427	3.393	0.00159	-0.17940	-1.15079	-0.40843 1
DiAc	C2'	126.23	107.05	126.44	91.71	1.71	2.005	0.00178	0.17295	1.14773	0.39659 1	0.79	92.50	91.23	91.24	0.835	3.427	3.393	0.00159	0.17940	1.15079	0.40843 1
Indigo	$\langle C2 \rangle$	126.23	107.05	126.44	91.71	1.71	2.005	0.00178				0.79	92.50	91.23	91.24	0.835	3.427	3.393	0.00159			
C _i -sym.	Ν	108.26	118.41	128.75	97.07	7.07	2.095	0.03173	-1.99015	0.56372	-0.51992 1	2.79	96.30	94.79	99.60	2.426	4.197	1.052	0.02925	-1.97344	0.57791	-0.56337 1
	N'	108.26	118.41	128.75	97.07	7.07	2.095	0.03173	1.99015	-0.56372	0.51992 1	2.79	96.30	94.79	99.60	2.426	4.197	1.052	0.02925	1.97344	-0.57791	0.56337 1
	$\langle N \rangle$	108.26	118.41	128.75	97.07	7.07	2.095	0.03173				2.79	96.30	94.79	99.60	2.426	4.197	1.052	0.02925			
	C3	126.51	128.71	104.78	90.23	0.23	2.000	0.00003	0.28088	-1.28543	-1.88521 1	0.13	90.15	90.36	90.15	4.120	0.686	3.729	0.00003	0.27871	-1.28532	-1.88463 1
	C3'	126.51	128.71	104.78	90.23	0.23	2.000	0.00003	-0.28088	1.28543	1.88521 1	0.13	90.15	90.36	90.15	4.120	0.686	3.729	0.00003	-0.27871	1.28532	1.88463 1
	$\langle C3 \rangle$	126.51	128.71	104.78	90.23	0.23	2.000	0.00003				0.13	90.15	90.36	90.15	4.120	0.686	3.729	0.00003			
	C8	118.01	119.22	122.07	92.77	2.77	2.014	0.00470	-2.54708	-0.35130	0.83812 1	0.20	92.80	92.58	92.91	1.957	2.316	1.812	0.00468	-2.54412	-0.35017	0.83666 1
	C8'	118.01	119.22	122.07	92.77	2.77	2.014	0.00470	2.54708	0.35130	-0.83812 1	0.20	92.80	92.58	92.91	1.957	2.316	1.812	0.00468	2.54412	0.35017	-0.83666 1
	$\langle C8 \rangle$	118.01	119.22	122.07	92.77	2.77	2.014	0.00470				0.20	92.80	92.58	92.91	1.957	2.316	1.812	0.00468			
N,N'-	C2	124.09	107.98	125.22	95.44	5.44	2.056	0.01851	-0.36561	0.71584	1.28497 1	2.22	97.66	94.09	94.21	0.955	3.333	3.150	0.01697	-0.37439	0.75325	1.28030 1
DiAc	C2'	124.09	107.98	125.22	95.44	5.44	2.056	0.01851	0.36561	-0.71584	1.28497 1	2.22	97.66	94.09	94.21	0.955	3.333	3.150	0.01697	0.37439	-0.75325	1.28030 1
Indigo	$\langle C2 \rangle$	124.09	107.98	125.22	95.44	5.44	2.056	0.01851				2.22	97.66	94.09	94.21	0.955	3.333	3.150	0.01697			
C ₂ -sym.	Ν	108.43	121.67	128.49	93.91	3.91	2.028	0.00941	1.26223	1.40021	-0.49993 1	1.57	93.26	92.75	95.43	2.668	3.749	0.968	0.00865	1.23947	1.40632	-0.51398 1
	N'	108.43	121.67	128.49	93.91	3.91	2.028	0.00941	-1.26223	-1.40021	-0.49993 1	1.57	93.26	92.75	95.43	2.668	3.749	0.968	0.00865	-1.23947	-1.40632	-0.51398 1
	$\langle N \rangle$	108.43	121.67	128.49	93.91	3.91	2.028	0.00941				1.57	93.26	92.75	95.43	2.668	3.749	0.968	0.00865			
	C3	126.92	128.70	104.21	91.35	1.35	2.003	0.00111	-1.67700	1.55869	0.76054 1	0.80	90.84	92.14	90.88	4.239	0.654	3.914	0.00091	-1.66448	1.56467	0.76149 1
	C3'	126.92	128.70	104.21	91.35	1.35	2.003	0.00111	1.67700	-1.55869	0.76054 1	0.80	90.84	92.14	90.88	4.239	0.654	3.914	0.00091	1.66448	-1.56467	0.76149 1
	$\langle C3 \rangle$	126.92	128.70	104.21	91.35	1.35	2.003	0.00111				0.80	90.84	92.14	90.88	4.239	0.654	3.914	0.00091			
	C8	118.80	119.67	121.22	91.85	1.85	2.006	0.00208	2.48586	1.15871	0.44552 1	0.08	91.86	91.77	91.91	1.982	2.174	1.878	0.00208	2.48465	1.15823	0.44509 1
	C8'	118.80	119.67	121.22	91.85	1.85	2.006	0.00208	-2.48586	-1.15871	0.44552 1	0.08	91.86	91.77	91.91	1.982	2.174	1.878	0.00208	-2.48465	-1.15823	0.44509 1
	$\langle C8 \rangle$	118.80	119.67	121.22	91.85	1.85	2.006	0.00208				0.08	91.86	91.77	91.91	1.982	2.174	1.878	0.00208			
5,5'-	C2	124.06	107.98	125.17	95.52	5.52	2.057	0.01906	0.80244	2.44121	-0.07639 1	2.25	97.77	94.15	94.27	0.957	3.333	3.150	0.01748	0.84091	2.43642	-0.07053 1
DiPhEt-	C2'	124.05	107.98	125.17	95.52	5.52	2.057	0.01907	-0.80236	2.44133	0.07764 1	2.25	97.77	94.15	94.27	0.957	3.333	3.149	0.01749	-0.84083	2.43655	0.07179 1
N,N '-	$\langle C2 \rangle$	124.05	107.98	125.17	95.52	5.52	2.057	0.01906				2.25	97.77	94.15	94.27	0.957	3.333	3.150	0.01748			
DiAc	N	108.38	121.67	128.60	93.84	3.84	2.027	0.00908	0.82764	0.65976	1.69303 1	1.55	93.20	92.70	95.34	2.669	3.769	0.963	0.00834	0.84162	0.64581	1.67442 1
Indigo	N'	108.38	121.67	128.59	93.84	3.84	2.027	0.00908	-0.82778	0.66094	-1.69277 1	1.56	93.20	92.70	95.34	2.669	3.769	0.963	0.00834	-0.84176	0.64697	-1.6/416 1
	$\langle N \rangle$	108.38	121.67	128.60	93.84	3.84	2.027	0.00908				1.56	93.20	92.70	95.34	2.669	3.769	0.963	0.00834		4 000 04	
	C3	126.90	128.74	104.20	91.32	1.32	2.003	0.00107	2.07205	1.90863	-0.97898 1	0.78	90.82	92.11	90.86	4.249	0.653	3.913	0.00088	2.07292	1.90961	-0.96537 1
	03	126.91	128.73	104.19	91.33	1.33	2.003	0.00109	-2.0/213	1.90836	0.98015 1	0.79	90.83	92.12	90.87	4.248	0.653	3.915	0.00090	-2.07302	1.90936	0.96643 I
	$\langle C3 \rangle$	126.91	128.73	104.19	91.33	1.33	2.003	0.00108				0.79	90.83	92.11	90.86	4.249	0.653	3.914	0.00089			
	C8	118.84	119.64	121.22	91.83	1.83	2.006	0.00204	0.15730	1.59979	2.74314 1	0.08	91.84	91.76	91.89	1.978	2.173	1.882	0.00204	0.15733	1.59936	2.74187 1
	C8'	118.84	119.65	121.21	91.82	1.82	2.006	0.00203	-0.15741	1.60157	-2.74211 1	0.08	91.83	91.75	91.88	1.979	2.171	1.882	0.00202	-0.15744	1.60114	-2.74086 1
	$\langle C8 \rangle$	118.84	119.64	121.21	91.83	1.83	2.006	0.00204				0.08	91.84	91.75	91.88	1.979	2.172	1.882	0.00203			

Table 10: Primary data of the POAV1 and POAV2 analysis for the computed C_i and C₂ symmetric unsubstituted *N*,*N*'-diacetylindigo and the 5,5'- and 6,6'-bis-substituted *N*,*N*'-diacetylindigo compounds with 4-ethylpheny (PhEt) and 4-methoxyphenyl (PhOMe) substituents.

Continuation Table 10

		POAV1																					
		neigh	nboring atc	oms													Р	OAV2					
Structure			angle	es, degree	-				dun	nmy atom po	sition		angles, d	egree						dur	nmy atom po	sition	
	Center																						
		θ_{12}	θ_{23}	θ_{31}	$\theta_{\sigma\pi}$	Pyr.	\bar{n}	т	Х	у	z r	POAV1	$\theta_{\sigma 1\pi}$	$\theta_{\sigma 2\pi}$	$\theta_{\sigma 3\pi}$	n_1	n_2	n_3	т	Х	у	Z	r
5,5'-	C2	124.11	107.97	125.21	95.44	5.44	2.055	0.01847	0.80088	-2.48239	0.07835 1	2.22	97.65	94.09	94.20	0.954	3.332	3.153	0.01693	0.83887	-2.47774	0.07261	1
DiPhOMe-	C2'	124.11	107.97	125.21	95.44	5.44	2.056	0.01850	-0.80079	-2.48255	-0.07780 1	2.22	97.66	94.09	94.21	0.954	3.332	3.152	0.01696	-0.83880	-2.47789	-0.07207	1
N,N '-	$\langle C2 \rangle$	124.11	107.97	125.21	95.44	5.44	2.055	0.01848				2.22	97.66	94.09	94.20	0.954	3.332	3.153	0.01694				
DiAc	Ν	108.38	121.61	128.61	93.89	3.89	2.028	0.00934	0.83686	-0.70117	-1.69150 1	1.58	93.25	92.73	95.41	2.663	3.775	0.964	0.00857	0.85111	-0.68710	-1.67265	1
Indigo	N'	108.38	121.62	128.60	93.89	3.89	2.028	0.00934	-0.83690	-0.70073	1.69149 1	1.57	93.25	92.73	95.41	2.664	3.774	0.964	0.00857	-0.85115	-0.68668	1.67265	1
	$\langle N \rangle$	108.38	121.61	128.61	93.89	3.89	2.028	0.00934				1.58	93.25	92.73	95.41	2.664	3.775	0.964	0.00857				
	C3	126.89	128.72	104.23	91.30	1.30	2.003	0.00103	2.06543	-1.95546	0.98645 1	0.77	90.81	92.07	90.85	4.239	0.655	3.902	0.00085	2.06633	-1.95646	0.97312	1
	C3'	126.89	128.72	104.23	91.30	1.30	2.003	0.00103	-2.06543	-1.95578	-0.98618 1	0.77	90.81	92.07	90.85	4.239	0.655	3.903	0.00085	-2.06633	-1.95678	-0.97284	1
	$\langle C3 \rangle$	126.89	128.72	104.23	91.30	1.30	2.003	0.00103				0.77	90.81	92.07	90.85	4.239	0.655	3.903	0.00085				
	C8	118.86	119.65	121.19	91.84	1.84	2.006	0.00207	0.16181	-1.64122	-2.74129 1	0.08	91.85	91.77	91.90	1.979	2.169	1.884	0.00206	0.16183	-1.64079	-2.74004	1
	C8'	118.86	119.64	121.19	91.84	1.84	2.006	0.00208	-0.16161	-1.64044	2.74156 1	0.08	91.86	91.77	91.90	1.979	2.169	1.885	0.00208	-0.16164	-1.64001	2.74031	1
	$\langle C8 \rangle$	118.86	119.64	121.19	91.84	1.84	2.006	0.00207				0.08	91.85	91.77	91.90	1.979	2.169	1.884	0.00207				
6,6'-	C2	124.19	108.03	125.08	95.43	5.43	2.055	0.01839	0.65198	0.46930	2.00998 1	2.20	97.63	94.10	94.19	0.958	3.305	3.159	0.01688	0.68750	0.48312	2.00545	1
DiPhEt-	C2'	124.19	108.03	125.08	95.43	5.43	2.055	0.01838	-0.65259	-0.46913	2.00979 1	2.20	97.63	94.10	94.19	0.958	3.305	3.159	0.01687	-0.68811	-0.48296	2.00525	1
N,N'-	$\langle C2 \rangle$	124.19	108.03	125.08	95.43	5.43	2.055	0.01839				2.20	97.63	94.10	94.19	0.958	3.305	3.159	0.01687				
DiAc	Ν	108.31	121.69	128.36	94.22	4.22	2.033	0.01101	1.57093	-1.05472	0.23555 1	1.71	93.51	92.97	95.88	2.695	3.761	0.963	0.01010	1.57363	-1.02936	0.21997	1
Indigo	N'	108.30	121.70	128.36	94.22	4.22	2.033	0.01100	-1.57098	1.05474	0.23497 1	1.71	93.51	92.97	95.88	2.696	3.761	0.963	0.01010	-1.57367	1.02937	0.21940	1
	$\langle N \rangle$	108.30	121.69	128.36	94.22	4.22	2.033	0.01101				1.71	93.51	92.97	95.88	2.696	3.761	0.963	0.01010				
	C3	126.89	128.84	104.09	91.38	1.38	2.003	0.00116	1.29704	1.88945	1.48376 1	0.82	90.85	92.20	90.89	4.290	0.647	3.931	0.00095	1.30500	1.87755	1.48474	1
	C3'	126.89	128.84	104.10	91.38	1.38	2.003	0.00116	-1.29745	-1.88935	1.48350 1	0.82	90.86	92.20	90.89	4.289	0.647	3.930	0.00096	-1.30543	-1.87743	1.48448	1
	$\langle C3 \rangle$	126.89	128.84	104.10	91.38	1.38	2.003	0.00116				0.82	90.85	92.20	90.89	4.290	0.647	3.930	0.00095				
	C8	118.88	119.75	121.10	91.73	1.73	2.005	0.00182	1.52993	-2.28758	1.19531 1	0.07	91.73	91.67	91.78	1.989	2.155	1.885	0.00182	1.52933	-2.28663	1.19496	1
	C8'	118.88	119.75	121.10	91.73	1.73	2.006	0.00184	-1.53036	2.28780	1.19458 1	0.07	91.74	91.67	91.79	1.989	2.156	1.884	0.00183	-1.52976	2.28684	1.19423	1
	$\langle C8 \rangle$	118.88	119.75	121.10	91.73	1.73	2.005	0.00183				0.07	91.74	91.67	91.79	1.989	2.155	1.884	0.00183				
6,6'-	C2	124.36	108.00	125.00	95.37	5.37	2.054	0.01801	0.64575	2.14594	-0.24530 1	2.19	97.56	94.06	94.13	0.955	3.289	3.184	0.01652	0.68107	2.14325	-0.25949	1
DiPhOMe-	C2'	124.19	108.01	125.20	95.33	5.33	2.053	0.01771	-0.65036	2.03530	0.68916 1	2.17	97.50	94.01	94.12	0.955	3.318	3.153	0.01624	-0.68514	2.02917	0.70272	1
N,N '-	$\langle C2 \rangle$	124.27	108.00	125.10	95.35	5.35	2.054	0.01786				2.18	97.53	94.04	94.12	0.955	3.303	3.169	0.01638				
DiAc	N	108.30	121.67	128.36	94.25	4.25	2.033	0.01117	1.58398	0.21002	1.05357 1	1.72	93.54	92.99	95.92	2.695	3.764	0.964	0.01024	1.58654	0.19741	1.02636	1
Indigo	N'	108.29	121.65	128.37	94.28	4.28	2.034	0.01132	-1.58285	0.43010	-1.00511 1	1.74	93.56	93.01	95.96	2.693	3.769	0.964	0.01039	-1.58529	0.41163	-0.98118	1
	$\langle N \rangle$	108.30	121.66	128.37	94.26	4.26	2.034	0.01124				1.73	93.55	93.00	95.94	2.694	3.767	0.964	0.01032				
	C3	126.84	128.86	104.12	91.38	1.38	2.004	0.00117	1.27846	1.79538	-1.72268 1	0.82	90.86	92.21	90.90	4.288	0.649	3.917	0.00096	1.28652	1.79501	-1.71079	1
	C3'	126.84	128.85	104.13	91.35	1.35	2.003	0.00112	-1.27297	1.36057	2.05226 1	0.81	90.84	92.16	90.88	4.286	0.649	3.916	0.00092	-1.28091	1.36276	2.04085	1
	$\langle C3 \rangle$	126.84	128.86	104.13	91.37	1.37	2.003	0.00114				0.81	90.85	92.18	90.89	4.287	0.649	3.916	0.00094				
	C8	118.88	119.79	121.04	91.80	1.80	2.006	0.00198	1.54356	1.02656	2.38956 1	0.07	91.80	91.74	91.85	1.995	2.149	1.885	0.00197	1.54293	1.02634	2.38858	1
	C8'	118.92	119.76	121.05	91.76	1.76	2.006	0.00190	-1.55411	1.52165	-2.12746 1	0.07	91.77	91.70	91.82	1.990	2.149	1.889	0.00190	-1.55351	1.52121	-2.12657	1
	$\langle C8 \rangle$	118.90	119.77	121.04	91.78	1.78	2.006	0.00194				0.07	91.79	91.72	91.84	1.993	2.149	1.887	0.00194				

Table 11: Primary data of the POAV1 and POAV2 analysis for the X-ray crystallographic determined molecular structures of N,N'-diacetylindigo (published by Grimme) ^[6] and
the 5,5'- and 6,6'-bis-substituted <i>N</i> , <i>N</i> '-diacetylindigo compounds 12 and 23 .

			POAV1																			
		neigl	nboring ato	oms													1	POAV2				
Comp.			angle	es, degree					du	mmy atom po	osition		angles,	degree						du	mmy atom po	osition
	Center				n.			1												i.		
		θ_{12}	θ_{23}	θ_{31}	θσπ	Pyr.	\bar{n}	т	Х	у	z r	POAV1	$\theta_{\sigma 1\pi}$	$\theta_{\sigma 2\pi}$	$\theta_{\sigma 3\pi}$	n_1	n_2	n_3	т	Х	у	z r
N,N'-	C2	124.52	108.07	123.60	96.46	6.46	2.079	0.02632	8.42217	3.11937	8.03551 1	2.55	99.01	95.04	94.92	0.989	3.149	3.302	0.02426	8.45932	3.13158	8.01416 1
DiAc	C2'	125.42	107.42	124.56	95.33	5.33	2.053	0.01774	7.03531	2.43044	8.39943 1	2.30	97.64	94.02	93.94	0.910	3.270	3.414	0.01608	6.99756	2.42371	8.41155 1
Indigo ^[0]	$\langle C2 \rangle$	124.97	107.74	124.08	95.90	5.90	2.066	0.02203				2.43	98.32	94.53	94.43	0.950	3.209	3.358	0.02017			
Grimme	N	107.59	122.11	126.80	96.19	6.19	2.072	0.02406	7.82106	2.57005	5.65320 1	2.60	94.96	94.40	98.74	2.936	3.730	0.949	0.02193	7.81903	2.61508	5.64837 1
	N'	108.21	121.48	127.24	95.79	5.79	2.063	0.02098	5.89487	4.66915	8.10428 1	2.30	94.80	94.14	98.03	2.760	3.708	0.989	0.01931	5.8/312	4.64898	8.07/14 1
	$\langle N \rangle$	107.90	121.79	127.02	95.99	5.99	2.068	0.02252				2.45	94.88	94.27	98.39	2.848	3.719	0.969	0.02062			
	C3	126.71	129.37	103.42	92.28	2.28	2.010	0.00319	9.21620	4.58286	7.79759 1	1.43	91.36	93.71	91.44	4.571	0.612	4.060	0.00257	9.22059	4.56380	7.78206 1
	(C2)	120.20	128.07	104.95	91.15	1.15	2.002	0.00080	5.80812	1.45501	/.81838 1	0.64	90.74	91.79	90.78	4.096	0.698	3.009	0.00068	5.80008	1.40309	7.82582 1
	$\langle CS \rangle$	126.49	129.02	104.19	91.72	1.72	2.006	0.00200	0 00200	1 06097	5 02100 1	1.04	91.05	92.75	91.11	4.333	0.000	3.864	0.00162	0 00246	1.06222	5 02104 1
		110.34	110.94	122.40	91.14	1.14	2.002	0.00079	6.06590	5 20427	0.20136 1	0.08	91.17	91.05	91.18	1.690	2.310	1.645	0.00078	6.00540	5 20200	0.28047 1
	(C8)	117.70	119.40	122.39	91.39	1.39	2.003	0.00134	0.833377	5.20427	9.29130 1	0.13	01 20	91.40	01.44	1.955	2.334	1.703	0.00133	0.03374	5.20290	9.2094/ 1
12	(00)	124.02	107.64	122.50	91.50	6.11	2.005	0.00110	12 01922	71 57710	10.04217 1	0.11	08.66	91.20	04.69	0.046	2.330	2 227	0.00110	12 02210	71 60957	10.01204 1
12 5 5'-subst	C2'	124.03	107.04	124.91	96.11	6.24	2.070	0.02349	12.91855	70 21342	11.65598 1	2.55	98.00	94.37	94.08	0.940	3.374	3 308	0.02143	12.93219	70 18346	11.67757 1
5,5 -30030.	$\langle C^2 \rangle$	124.04	107.90	123.05	96.18	6.18	2.074	0.02400	12.45000	70.21542	11.05570 1	2.50	98 70	94.05	94.75	0.961	3 274	3 267	0.02233	12.41557	/0.10540	11.07757 1
	N	108 53	122.60	124.37	92.23	2.23	2.002	0.02400	12 51651	70 52331	8 69723 1	0.90	91.83	91 59	93.11	2 729	3 629	0.949	0.02199	12 50734	70 53597	8 69573 1
	N'	108.04	122.76	128.24	93.21	3.21	2.019	0.00633	10.06826	70.99460	11.34552 1	1.35	92.59	92.26	94.53	2.823	3.693	0.925	0.00577	10.06691	70.97439	11.33358 1
	$\langle N \rangle$	108.29	122.68	128.33	92.72	2.72	2.014	0.00468				1.12	92.21	91.93	93.82	2.776	3.661	0.937	0.00428			
	C3	126.07	128.98	104.72	91.59	1.59	2.005	0.00154	12.39060	73.09209	10.54827 1	0.90	91.00	92.49	91.07	4.206	0.686	3.685	0.00129	12.40094	73.08407	10.53954 1
	C3'	126.24	128.85	104.66	91.64	1.64	2.005	0.00165	12.16078	68.60370	11.40890 1	0.94	91.04	92.58	91.10	4.192	0.683	3.724	0.00138	12.15111	68.61248	11.41874 1
	$\langle C3 \rangle$	126.15	128.91	104.69	91.62	1.62	2.005	0.00159				0.92	91.02	92.53	91.09	4.199	0.684	3.704	0.00134			
	C8	117.53	119.00	122.88	92.57	2.57	2.012	0.00403	13.48982	69.32981	9.12114 1	0.24	92.61	92.33	92.74	1.932	2.423	1.756	0.00401	13.48690	69.33251	9.12262 1
	C8'	116.32	120.05	123.22	92.12	2.12	2.008	0.00275	10.46849	72.29762	12.18886 1	0.26	92.08	91.90	92.35	2.062	2.468	1.616	0.00273	10.47121	72.29520	12.18616 1
	$\langle C8 \rangle$	116.92	119.52	123.05	92.34	2.34	2.010	0.00339				0.25	92.35	92.12	92.55	1.997	2.446	1.686	0.00337			
23	C2	125.13	108.27	123.89	95.44	5.44	2.055	0.01846	49.57513	6.61039	-14.47354 1	2.15	97.58	94.26	94.12	0.977	3.090	3.292	0.01702	49.58717	6.58496	-14.49829 1
6,6'-subst.	C2'	125.85	108.12	123.06	95.70	5.70	2.061	0.02031	49.36012	7.96825	-13.68789 1	2.28	97.96	94.53	94.22	0.973	2.995	3.453	0.01868	49.35410	7.99299	-13.65731 1
	$\langle C2 \rangle$	125.49	108.19	123.47	95.57	5.57	2.058	0.01939				2.21	97.77	94.39	94.17	0.975	3.043	3.373	0.01785			
	Ν	107.02	121.00	123.78	99.54	9.54	2.180	0.05992	51.77703	7.61165	-15.24509 1	3.88	97.57	97.01	103.40	3.164	3.687	1.022	0.05492	51.80371	7.56319	-15.20596 1
	N'	107.48	122.06	124.48	98.12	8.12	2.127	0.04240	50.40171	6.76757	-11.71324 1	3.28	96.41	96.01	101.38	3.121	3.550	1.000	0.03892	50.44318	6.80609	-11.72179 1
	$\langle N \rangle$	107.25	121.53	124.13	98.83	8.83	2.153	0.05116				3.58	96.99	96.51	102.39	3.143	3.618	1.011	0.04692			
	C3	127.14	128.60	104.01	91.66	1.66	2.005	0.00168	49.95339	5.00937	-14.34430 1	0.99	91.03	92.65	91.06	4.269	0.643	3.998	0.00138	49.95912	5.01844	-14.35794 1
	C3'	127.22	128.39	104.18	91.50	1.50	2.004	0.00138	49.90074	9.50331	-13.42855 1	0.89	90.94	92.39	90.97	4.191	0.652	3.977	0.00113	49.89556	9.49503	-13.41649 1
	$\langle C3 \rangle$	127.18	128.49	104.09	91.58	1.58	2.005	0.00153	* 0.0704-			0.94	90.99	92.52	91.02	4.230	0.647	3.987	0.00125	#0.0 C0 C7		
	C8	117.70	119.18	123.02	91.05	1.05	2.002	0.00067	50.86915	8.55931	-16.19589 1	0.10	91.06	90.95	91.12	1.924	2.404	1.750	0.00066	50.86958	8.55856	-16.19441 1
	C8'	117.53	119.76	122.48	91.61	1.61	2.005	0.00159	49.06390	5.87049	-11.73359 1	0.14	91.61	91.49	91.73	2.000	2.340	1.734	0.00158	49.06552	5.87146	-11.73513 1
-	$\langle C8 \rangle$	117.62	119.47	122.75	91.33	1.33	2.003	0.00113				0.12	91.34	91.22	91.42	1.962	2.372	1.742	0.00112			

Table 12: Intramolecular distances and angles in the computed C_i and C_2 symmetric unsubstituted *N*,*N*'-diacetyl indigo and the X-ray crystallographic determined molecular structures of *N*,*N*'-diacetyl indigo (published by Grimme)^[6] and the 5,5'- and 6,6'-bis-substituted *N*,*N*'-diacetyl indigo compounds **12** and **23** after introduction of the POAV1 and POAV2 dummy atoms.

Dist./Angle/Dihedral	Function	Ci	C ₂	Grimme ^[6]	12 (5,5')	23 (6,6')
C2	Dynamidalization 0 [8]			6.46	6.12	5.44
C2'	Pyramidalization θ_{C2} [*]			5.33	6.24	5.70
Av.	IOAVI	1.71	5.45	5.90	6.18	5.57
Ν	Pyramidalization A [°]			6.19	2.23	9.54
N'	POAV1			5.79	3.21	8.12
Av.	10/10/1	7.07	3.91	5.99	2.72	8.83
<u>C3</u>	Pyramidalization A [°]			2.29	1.59	1.66
C3'	POAV1			1.15	1.64	1.50
Av.	101111	0.23	1.35	1.72	1.62	1.58
C8	Pyramidalization θ_{co} [°]			1.14	2.57	1.05
<u>C8'</u>	POAV1			1.59	2.12	1.61
Av.		2.77	1.85	1.36	2.34	1.33
C2=C2'	Distance $d_{C2-C2'}$ [Å]	1.362	1.364	1.349	1.362	1.351
C2-C3				1.499	1.504	1.503
C2'-C3'	Distance d_{C2-C3} [Å]			1.502	1.493	1.497
Av.		1.514	1.509	1.501	1.499	1.500
N-C7a				1.426	1.429	1.433
N'-C7a'	Distance $d_{\text{N-C7a}}$ [A]			1.426	1.428	1.433
Av.		1.427	1.429	1.426	1.428	1.433
<u>N-C2</u>				1.414	1.413	1.419
<u>N'-C2'</u>	Distance $d_{\text{N-C2}}$ [A]	1.110	1.10-	1.413	1.413	1.417
Av.		1.413	1.407	1.414	1.413	1.418
<u>N-C8</u>				1.411	1.418	1.418
<u>N'-C8'</u>	Distance $d_{\text{N-C8}}$ [A]	1.420	1.404	1.412	1.420	1.406
Av.		1.438	1.424	1.411	1.419	1.412
C2(p)-C2-C2'-C2(p)'	Twist $\Theta_{C2-C2'}$ [°] POAV1	180.00	-23.96	-19.54	-19.46	-20.06
C2(p)-C2-C2'-C2(p)'	Twist $\Theta_{C2-C2'}$ [°] POAV2	180.00	-24.15	-19.37	-19.46	-19.71
C3(p)-C3-C2-C2(p)	p-orbital overlap	12.18	13.59	18.39	12.25	16.11
<u>C3(p)'-C3'-C2'-C2(p)'</u>	Θ_{C2-C3} [°]	-12.18	13.59	11.78	15.33	16.59
Av.	POAVI	±12.18	13.59	15.09	13.79	16.35
C3(p)-C3-C2-C2(p)	p-orbital overlap	11.64	12.44	17.36	10.90	15.09
C3(p)'-C3'-C2'-C2(p)'	Θ_{C2-C3} [°]	-11.64	12.44	10.37	13.97	15.32
Av.	POAV2	±11.64	12.44	13.87	12.44	15.21
N(p)-N-C2-C2(p)	p-orbital overlap	155.78	158.77	148.97	162.67	147.82
N(p)'-N'-C2'-C2(p)'	Θ_{C2-N} [°]	-155.78	158.77	158.10	158.89	150.15
Av.	POAVI	± 155.78	158.77	153.54	160.78	148.99
N(p)-N-C2-C2(p)	p-orbital overlap	159.12	162.06	153.31	165.59	152.91
N(p)'-N'-C2'-C2(p)'	Θ_{C2-N} [°]	-159.12	162.06	162.03	162.01	154.72
Av.	POAV2	± 159.12	-162.06	157.67	163.80	153.82
N(p)-N-C8-C8(p)	p-orbital overlap	-37.15	-20.58	-13.81	-31.66	-14.10
N(p)'-N'-C8'-C8(p)'	$\Theta_{N-C8} [\circ]$	37.15	-20.58	-26.18	-30.70	-19.37
Av.	POAVI	±37.15	-20.58	-20.00	-31.18	-16.74
N(p)-N-C8-C8(p)	p-orbital overlap	-38.40	-21.02	-14.27	-31.92	-14.59
N(p)'-N'-C8'-C8(p)'	Θ_{N-C8}	38.40	-21.02	-26.70	-31.11	-19.76
AV.	PUAV2	± 38.40	-21.02	-20.49	-31.52	-17.18
Ln (5/6-5'/6') to Ln(2-2')	Skew $\sigma[\circ]$	11.63	4.28	7.37	3.91	5.86
Tor: 5-6-5'-6'	Effective ring twist α [°]	0.00	-24.67	-19.17	-26.05	-18.68
Ln (5-7a) to Ln (5'-7a')	Specific bent β_{C5} [°]	0.00	49.14	52.90	50.60	54.29
Ln (3a-6) to Ln (3a'-6')	Specific bent β_{C6} [°]	0.00	23.45	32.44	26.11	32.41
Ln(5/6-3a/7a) to Ln(2-2')		15.12	21.83	34.53	22.13	26.34
Ln(5'/6'-3a'/7a') to Ln(2-2')		-15.12	21.83	16.91	23.58	26.56
Sum	Overall bent γ	0	43.65	51.44	45.71	52.90

"p" denotes the POAV dummy atom of the appendent atom. "Ln" denotes a line which was defined to pass through the specified atoms. X/Y indicates that the centre between X and Y. The angle between the lines was determined using the Diamond 3 software from *Crystal Impact*.

Dist./Angle/Dihedral	Function	5,5'-DiPhEt	5,5'-DiPhOMe	6,6'-DiPhEt	6,6'-DiPhOMe
C2	D	5.52	5.44	5.43	5.37
C2'	Pyramidalization θ_{C2} [*]	5.52	5.44	5.43	5.33
Av.	TUAVI	5.52	5.44	5.43	5.35
Ν	D	3.84	3.89	4.22	4.25
N'	Pyramidalization $\theta_{\rm N}$ [*]	3.84	3.89	4.22	4.28
Av.	TUAVI	3.84	3.89	4.22	4.26
C3	Duramidalization 0 [9]	1.32	1.30	1.38	1.38
C3'	POAV1	1.33	1.30	1.38	1.35
Av.	TOAVI	1.33	1.30	1.38	1.37
<u>C8</u>	Pyramidalization A [°]	1.83	1.84	1.73	1.80
C8'	POAV1	1.82	1.84	1.73	1.76
Av.	101111	1.83	1.84	1.73	1.78
C2=C2'	Distance $d_{C2-C2'}$ [Å]	1.364	1.364	1.363	1.363
C2-C3					
C2'-C3'	Distance d_{C2-C3} [Å]				
Av.		1.510	1.510	1.510	1.510
N-C7a					
<u>N'-C'a'</u>	Distance $d_{\text{N-C7a}}$ [A]	1.420	1.420	1.420	1.400
Av.		1.428	1.428	1.429	1.429
N-C2					
<u>N'-C2'</u>	Distance $d_{\text{N-C2}}$ [A]	1 407	1 407	1 400	1 400
AV.		1.407	1.407	1.409	1.409
N-C8	Distance 1 [Å]				
<u>N-Co</u>	Distance $a_{\text{N-C8}}$ [A]	1 422	1 422	1 422	1 422
AV.	Truigt Q [9] DOAV1	24.40	1.422	24.15	1.422
$C_2(p) - C_2 - C_2(p)$	Twist $\Theta_{C2-C2'}$ [POAV1	-24.40	-24.54	-24.13	-23.33
$C_2(p)$ - C_2 - C_2 - $C_2(p)$	Twist $\Theta_{C2-C2'}$ [7] POAV2	-24.00	-24.33	-24.30	-23.09
$C_{3}(p)$ - C_{3} - C_{2} - $C_{2}(p)$	p-orbital overlap				13.01
$\frac{C_{3}(p) - C_{3} - C_{2} - C_{2}(p)}{\Delta y}$	POAV1	13.62	13.28	13 70	13.55
Av.		15.02	13.20	13.79	13.36
$\frac{C_3(p)}{C_3} = \frac{C_2(p)}{C_3(p)}$	p-oronal overlap				12.44
<u>Av</u>	POAV2	12.44	12.11	12.66	12.47
$\frac{1}{N(n)} \ge C^2(n)$	n orbital avarlan	12.77	12.11	12.00	158 20
N(p)'-N'-C2'-C2(p)'					158.09
Av	POAV1	158 80	159.04	158 17	158.19
$N(n)-N-C^2-C^2(n)$	n-orbital overlan	100.00	107.01	100.17	161.67
N(p)'-N'-C2'-C2(p)'					161.47
Av	POAV2	162.10	162.33	161 55	161.57
N(p)-N-C8-C8(p)	n-orbital overlan	102.10	102.00	101.00	-20.03
N(p)'-N'-C8'-C8(p)'	Θ_{NC} [°]				-20.15
Av.	POAV1	-20.04	-20.31	-19.60	-20.09
N(p)-N-C8-C8(p)	p-orbital overlap				-20.50
N(p)'-N'-C8'-C8(p)'	Θ_{N-C8} [°]				-20.61
Av.	POAV2	-20.48	-20.75	-20.06	-20.55
Ln (5/6-5'/6') to Ln(2-2')	Skew σ [°]	4.20	4.06	4.69	4.59
Tor: 5-6-5'-6'	Effective ring twist a [°]	-26.08	-25.80	-23.95	-22.59
Ln (5-7a) to Ln (5'-7a')	Specific bent β_{C5} [°]	49.97	48.54	50.07	49.01
Ln (3a-6) to Ln (3a'-6')	Specific bent β_{C6} [°]	23.83	22.74	24.04	24.13
Ln(5/6-3a/7a) to Ln(2-2')		22.15	21.38	22.39	21.91
Ln(5'/6'-3a'/7a') to Ln(2-2')		22.14	21.37	22.40	22.28
Sum	Overall bent y	44.29	42.75	44.79	44.20

Table 13: Intramolecular distances and angles in the computed C_2 symmetric molecular structures of 5,5'- and 6,6'-bis-substituted *N*,*N*'-diacetyl indigo compounds with 4-ethylpheny (PhEt) and 4-methoxyphenyl (PhOMe) substituents after introduction of the POAV1 and POAV2 dummy atoms.

"p" denotes the POAV dummy atom of the appendent atom. "Ln" denotes a line which was defined to pass through the specified atoms. X/Y indicates that the centre between X and Y. The angle between the lines was determined using the Diamond 3 software from *Crystal Impact*.

Reference:

- [1] G. W. Gray, C. Hogg, D. Lacey, Mol. Cryst. Liq. Cryst. 1981, 67, 1.
- [2] P. Davidson, D. Petermann, A. M. Levelut, J. Phys. II 1995, 5, 113.
- [3] M. J. Frisch, et al., Gaussian Inc., Wallingford CT, 2004.
- [4] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785; c) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200.
- [5] a) R. C. Haddon, J. Am. Chem. Soc. 1986, 108, 2837; b) R. C. Haddon, Accounts of Chemical Research 1988, 21, 243; c) R. C. Haddon, J. Phys. Chem. A 2001, 105, 4164; d) R. C. Haddon, L. T. Scott, Pure Appl. Chem. 1986, 58, 137.
- [6] G. Grimme, S. Grimme, P. G. Jones, P. Boldt, *Chem. Ber.* 1993, 126, 1015.

Full reference for Gaussian 03 (Ref. 30 of the main article):

Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.

Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,

G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.

Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G.

A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.

Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,

Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.

Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.

Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.