Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

ESI

Synthesis and Acid-Base Property of Proton-Bridged Biaryl Compound Based on Pyridylazulene

Kazuki Ninomiya^a, Yumi. Harada^b, Tomoaki Kanetou,^c Yuma Suenaga,^a Toshihiro Murafuji^a and Ryo Tsunashima^c

GRADUATE SCHOOL OF MEDICINE, YAMAGUCHI UNIVERSITY, YAMAGUCHI 753-8512, JAPAN DEPARTMENT OF BIOLOGY AND CHEMISTRY, YAMAGUCHI UNIVERSITY, YAMAGUCHI, 753-8512, JAPAN. GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, YAMAGUCHI UNIVERSITY, YAMAGUCHI 753-8512, JAPAN.

1. vis-NIR spectra

Figure S1. vis-NIR spectra of 1 and 3 in acetonitrile (0.5 mM)

2. DFT calculations

N–H distance dependences of the potential energy difference (ΔE) and molecular orbitals were calculated by the B3LYP/6-31G(d, p) level of theory. The initial structure was taken from the crystal structure where proton is positioned so as to N-H-N angle at 180 degree. The Δd is differential distance from a center between two N atoms and ΔE at Δd =0 is set to 0 eV. Potential energies were calculated for only Py rings where other azulene skeleton was deleted.

(i) Potential energy; ΔE with Δd see figure 4 in main text

(ii) Molecular orbital with Δd

The situation of $\Delta d = 0$ is corresponded to transition state for proton hopping. DFT calculation showed that LUMO and LUMO+1 (as well as HOMO and HOMO-1) were almost degenerated at $\Delta d = 0$. Displacement from $\Delta d = 0$ slightly lowered HOMO-LUMO energy gaps. This is ascribed by decreased energy level of LUMO by stronger hydrogen bond between N and proton.

Figure S3-3-1. Molecular orientation with atomic number for table S3-3-1 to S3-3-3.

Table S3-3-1. Molecular orbitals and energies for 1H⁺-a.

Figure S3-3-2. Energy diagram of **1H⁺-a**.

0.0

 Δd / Å

-0.2

0.2

(b) 1H+-b

Δd	HOMO-1(106)	HOMO (107)	LUMO (108)	LUMO+1(109)
0	-8.191 eV	-8.082 eV	-5.034 eV	-5.007 eV
(±)0.20	-8.218 eV	-8.055 eV	-5.252 eV	-4.871 eV

c) 1H+-c

Table S3-3-3.	Molecular	orbitals	and e	nergies	for	1H ⁺ -c.

Δd	HOMO-1(106)	HOMO (107)	LUMO (108)	LUMO+1(109)
0	-8.218 eV	-8.055 eV	-5.034 eV	-4.980 eV
-0.20	-8.245 eV	-8.055eV	-5.197 eV	-4.871eV
+0.20	-8.128 eV	-8.055 eV	-5.306 eV	-4.844 eV

3. NMR

Figure S3-1. ¹H-NMR of **1**

Figure S3-2. ¹³C-NMR of 1

Figure S3-3. ¹H-NMR of 4

Figure S3-4. ¹³C-NMR of **4**; Peaks at 115.5 and 123.7 are assigned to peaks by unseparated compound **3** (see ref 26).

4. Acid-base titration

We estimated concentration during titration according to following

$[1H] = (A-A_0)/(A_{\infty}-A_0) \times [1]_0$

where A, A_{∞} and A_0 are absorbance (606 nm) during titration, at after titration (saturated) and before titration, respectively. [1]₀ is initial concentration of **1** (0.5 mM). By similar way, concentration of **3H** was estimated, but using absorbance at 700 nm. We have confirmed that corresponding results were obtained using absorbance at several different wavelengths.

Titration using HBF₄ resulted in similar changes (Figure S4). Peaks observed after protonation are almost corresponded. However, first and second protonation are almost overlapped. And spectra changes are saturated at 4 eq of acid. This is accounted for by stronger acidity of HBF₄ (pKa -0.4) than TFA (pKa 0.23).

Figure S4. Plot of absorbance at 640 nm against proton concentration per concentration of **1** (left) and original UV-VIS spectra during titration upto 4 eq of proton against **1** (right).