Supporting Information

A dual responsive fluorescent probe based on a

BODIPY/Pyridine conjugate for reversible

detection of Au^{3+} and Hydronium ions

Muhammed Üçüncü, Erman Karakuş and Mustafa Emrullahoğlu*

Department of Chemistry, Faculty of Science, İzmir Institute of Technology,
Urla, 35430, Izmir, Turkey
Table of Contents Page

1. General methods 3
2. Synthesis of probe molecule 3
3. Effect of solvent 6
4. Effect of water ratio 7
5. Effect of pH 8
6. Reaction - Time Profile of BOD-Pyr with Au^{3+} 9
7. Absorption and emission spectra of BOD-Pyr 10
8. Fluorescence titration of BOD-Pyr with $\mathrm{Au}(\mathrm{III})$ in EtOH/Water 11
9. Job's plot analysis of BOD-Pyr with Au^{3+} 12
10. The fluorescence responses of BOD-Pyr with Au^{3+} and other ions 13
11. The fluorescence responses of BOD-Pyr in the presence of $A u^{3+}$ and other metal ions 14
12. Determination of detection limit 15
In Water/EtOH (1/1, pH = 7.0) 15
13. Reversibility of $A u^{3+}$ sensing event 17
14. Determination of the association constant and stoichiometry 18
15. ${ }^{1} \mathrm{H}$ NMR titration study of BOD-Pyr with Au^{3+} 20
16. Fluorescence titration of BOD-Pyr with $\mathrm{Au}(\mathrm{III})$ in dichloroethane 21
17. Quantitative detection of residual Au^{3+} content in compound B purified by silica gel chromatography 22
18. Sensitivity in various organic solvents 23
19. Determination of quantum yields 24
20. Absorbance and fluorescence spectra of BOD-Pyr at various pH values 25
21. Reversibility of pH Sensing 26
22. Determination of pKa of BOD-Pyr 27
23. ${ }^{1} \mathrm{H}$ NMR of BOD-Pyr 28
24. ${ }^{13} \mathrm{C}$ NMR of BOD-Pyr 28
25. MALDI-TOF-TOF MS of BOD-Pyr 29
26. References 29

1. General methods

All reagents were purchased from commercial suppliers (Aldrich and Merck) and they were used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were measured on a Varian VNMRJ 400 Nuclear Magnetic Resonance Spectrometer. Bruker MALDI-TOF-TOF Mass Spectrometer was used for mass spectrometry analysis. UV absorption spectra were obtained on Shimadzu UV-2550 Spectrophotometer. Fluorescence measurements were performed by using Varian Cary Eclipse Fluorescence spectrophotometer. Samples were contained in 10.0 mm path length quartz cuvettes (2.0 mL volume). Upon excitation at 500 nm , the emission spectra were integrated over the range 520 nm to 750 nm . The slit width was 5 nm for both excitation and emission. Melting points were determined by using an Electrothermal Melting Point Apparatus 9200. The pH was recorded by HI-8014 instrument (HANNA). All measurements were conducted at least in triplicate.

2. Synthesis of probe molecule

The synthesis pathway for BOD-Pyr was shown in Scheme 1. Bodipy-1 and Bodipy-2 were synthesized by using literature procedure ${ }^{[1]}$. Bodipy-2 was synthesized from Bodipy-1 by using well known Vilsmeier Haack's formylation reaction. The obtained molecule was converted to BOD-Pyr by using Wittig reagent ${ }^{[2]}$ and triethylamine base in dioxane.

Scheme 1: Synthesis pathway of BOD-Pyr. (i) DCM, RT, overnight, (ii) $\mathrm{POCl}_{3}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$, then DCE, $60^{\circ} \mathrm{C}$, overnight, (iii) $\mathrm{Et}_{3} \mathrm{~N}$, Dioxane, RT, overnight.

Synthesis of BOD-Pyr

To a solution of Bodipy-2 ($100 \mathrm{mg}, 0.285 \mathrm{mmol}$) in dioxane (10 mL) was added triphenyl(2-pyridylmethyl)phosphonium chloride hydrochloride ($389 \mathrm{mg}, 0.896 \mathrm{mmol}$). Then, $250 \mu \mathrm{l}$ of triethyl amine was added drop by drop and the resultant solution was stirred at room temperature for overnight. After reaction completed, the solution was concentrated in vacuum and extracted three times with dichloromethane. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The resultant residue was purified by silica gel column chromatography (hexane / ethyl acetate (8/1)) to afford BOD-Pyr as green solid ($68.1 \mathrm{mg}, 56 \%$ yield). Mp: 267-269 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.56(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dt}, \mathrm{J}=8.0,1.6 \mathrm{~Hz} 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~s}$, 1H), 7.32-7.29 (m, 2H), 7.28 (s, 1H), 7.12-7.09 (m, 1H), 6.72 (d, J= $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}$,
$1 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ $156.3,155.9,154.9,149.6,143.8,141.8,139.3,136.5,135.0,132.0,131.0,129.5,129.2$, 129.1, 128.1, 127.8, 123.9, 121.8, 121.8, 14.7, 14.5, 14.1, 12.9. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{3}$: $427.203[\mathrm{M}]^{+}$, Found: $428.244[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of compound $B^{[3]}$

Scheme 2: Synthesis of compound B by gold-catalyzed cyclization of propargylic amide

3. Effect of solvent

Figure S1: Effect of solvent on the interaction of BOD-Pyr (10.0 1 M) with $\mathrm{Au}^{3+}(60 \mu \mathrm{M}$, 6 equiv.) in various solvent combinations ($\left(\right.$ Solvent $\left.\left./ \mathrm{H}_{2} \mathrm{O}\right) \mathrm{v} / \mathrm{v}, 1: 1\right)\left(\lambda_{\mathrm{ex}}: 500 \mathrm{~nm}\right.$, at $\left.25^{\circ} \mathrm{C}\right)$.

4. Effect of water ratio

Figure S2: Effect of fraction of water on the interaction of BOD-Pyr (10.0 $\mathbf{\mu M}$) with Au^{3+} (60 $\mu \mathrm{M}, 6$ equiv.) in 0.1 M potassium phosphate buffer, $\mathrm{pH} 7.0 / \mathrm{EtOH}(\mathrm{v} / \mathrm{v}, 1: 1)\left(\lambda_{\mathrm{ex}}: 500 \mathrm{~nm}, \lambda_{\mathrm{em}}=\right.$ 577 nm at $\left.25^{\circ} \mathrm{C}\right)$.

5. Effect of $\mathbf{p H}$

Figure S3: Effect of fraction of pH on the interaction of BOD-Pyr $(10.0 \mu \mathrm{M})$ with $\mathrm{Au}^{3+}(60$ $\mu \mathrm{M}, 6$ equiv.) in 0.1 M potassium phosphate buffer/EtOH (v/v, $1: 1)\left(\lambda_{\text {ex }}: 500 \mathrm{~nm}, \lambda_{\mathrm{em}}=577 \mathrm{~nm}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

6. Reaction - Time Profile of BOD-Pyr with Au^{3+}

Figure S4: Reaction time profiles of BOD-Pyr $(10.0 \mu \mathrm{M})$ in the presence of $\mathrm{Au}^{3+}[30(\mathbf{\square})$ and $60(\bullet) \mu \mathrm{M}$.$] . The fluorescence intensities at 577 \mathrm{~nm}$ were continuously monitored at time intervals in 0.1 M phosphate buffer/EtOH (pH 7.0, v/v, 1:1) ($\lambda_{\mathrm{ex}}: 500 \mathrm{~nm}, \lambda_{\mathrm{em}}=577 \mathrm{~nm}$ at 25 ${ }^{\circ} \mathrm{C}$).

7. Absorption and emission spectra of BOD-Pyr

Figure S5: (a) Absorbance and (b) fluorescence spectra of BOD-Pyr $(10 \mu \mathrm{M})$ in the absence and presence of 6 equiv. $(60 \mu \mathrm{M})$ of Au^{3+} in 0.1 M phosphate buffer/EtOH $(\mathrm{pH} 7.0, \mathrm{v} / \mathrm{v}, 1: 1)$.

8. Fluorescence titration of BOD-Pyr with Au(III) in EtOH/Water

Figure S6: Fluorescence spectra of BOD-Pyr $(10 \mu \mathrm{M})$ in the presence of increasing concentrations of $\mathrm{Au}^{3+}(0-60 \mu \mathrm{M}, 0-6$ equiv.) in 0.1 M phosphate buffer/EtOH $(\mathrm{pH} 7.0, \mathrm{v} / \mathrm{v}$, 1:1) $\left(\lambda_{\text {exc }}=500 \mathrm{~nm}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

9. Job's plot analysis of BOD-Pyr with Au ${ }^{3+}$

Figure S7: The Job's plot analysis between BOD-Pyr and Au^{3+} (a) in 0.1 M phosphate buffer/EtOH (pH 7.0 , v/v, 1:1) (b) in ethanol. The total concentration of BOD-Pyr and Au^{3+} was kept constant at $20 \mu \mathrm{M}\left(\lambda_{\mathrm{exc}}=500 \mathrm{~nm}, \lambda_{\mathrm{em}}=577 \mathrm{~nm}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

10. The fluorescence responses of BOD-Pyr with Au^{3+} and other ions

Figure S8: Fluorescence intensities of BOD-Pyr $(10.0 \mu \mathrm{M})$, BOD-Pyr $(10.0 \mu \mathrm{M})+\mathrm{Au}^{3+}(60$ $\mu \mathrm{M}$, 6 equiv.), BOD-Pyr ($10.0 \mu \mathrm{M}$) + other ions $(250 \mu \mathrm{M}, 25$ equiv.) in 0.1 M potassium phosphate buffer, $\mathrm{pH} 7.0 / \mathrm{EtOH}(\mathrm{v} / \mathrm{v}, 1: 1)\left(\lambda_{\mathrm{ex}}: 500 \mathrm{~nm}\right.$, at $\left.25^{\circ} \mathrm{C}\right)$. Inset: Bar graph notation.
11. The fluorescence responses of BOD-Pyr in the presence of $A u^{3+}$ and other metal ions

Figure S9: Fluorescence intensities of BOD-Pyr $(10 \mu \mathrm{M})$ in the presence of Au^{3+} (6 equiv.) and 10 equiv. of other metal ions in 0.1 M phosphate buffer/EtOH (pH 7.0, v/v, 1:1) $\left(\lambda_{\mathrm{exc}}=500\right.$ $\mathrm{nm}, \lambda_{\mathrm{em}}=577 \mathrm{~nm}$ at $25^{\circ} \mathrm{C}$).

12. Determination of detection limit

In Water/EtOH (1/1, $\mathbf{p H}=\mathbf{7 . 0}$)

The detection limit was calculated based on the fluorescence titration ${ }^{[1]}$. To determine the detection limit, the emission intensity of BOD-Pyr $(10.0 \mu \mathrm{M})$ without Au^{3+} was measured by 10 times and the standard deviation of blank measurements was determined. Under the present conditions, a good linear relationship between the fluorescence intensity and Au^{3+} concentration could be obtained in the $2-7 \mu \mathrm{M}(\mathrm{R}=0.9828)$. The detection limit is then calculated with the equation: detection limit $=3 \sigma \mathrm{bi} / \mathrm{m}$, where $\sigma b \mathrm{i}$ is the standard deviation of blank measurements; m is the slope between intensity versus sample concentration. The detection limit was measured to be $4.0 \mu \mathrm{M}$.

Figure S10: Fluorescence changes of BOD-Pyr $(10.0 \mu \mathrm{M})$ upon addition of Au^{3+} (2 to $7 \mu \mathrm{M}$, 0.2 to 0.7 equiv.) in 0.1 M potassium phosphate buffer, $\mathrm{pH} 7.0 / \mathrm{EtOH}(\mathrm{v} / \mathrm{v}, 1: 1)\left(\lambda_{\mathrm{ex}}: 500 \mathrm{~nm}\right.$, at $25^{\circ} \mathrm{C}$).

In Dichloroethane

Under the present conditions, a good linear relationship between the fluorescence intensity and Au^{3+} concentration could be obtained in the $0.05-1.0 \mu \mathrm{M}(\mathrm{R}=0.9954)$. The detection limit was measured to be 63 nM .

Figure S11: Fluorescence changes of BOD-Pyr $(10.0 \mu \mathrm{M})$ upon addition of $\mathrm{Au}^{3+}(0.05$ to $1.0 \mu \mathrm{M}, 0.005$ to 0.1 equiv.) in dichloroethane ($\lambda_{\text {ex }}: 500 \mathrm{~nm}$, at $25^{\circ} \mathrm{C}$).

13. Reversibility of Au^{3+} sensing event

Figure S12: Fluorescence intensities of BOD-Pyr ($10.0 \mu \mathrm{M}$) (black), BOD-Pyr $(10.0 \mu \mathrm{M})+$ $\mathrm{Au}^{3+}\left(60 \mu \mathrm{M}, 6\right.$ equiv.) (red), BOD-Pyr $(10.0 \mu \mathrm{M})+\mathrm{Au}^{3+}(60 \mu \mathrm{M}, 6$ equiv. $)+$ excess amount of CN^{-}(blue), in 0.1 M potassium phosphate buffer, $\mathrm{pH} 7.0 / \mathrm{EtOH}(\mathrm{v} / \mathrm{v}, 1: 1)\left(\lambda_{\text {ex }}: 500 \mathrm{~nm}\right.$, at $25^{\circ} \mathrm{C}$).

14. Determination of the association constant and stoichiometry

The association constant of $\left[\mathrm{Au}^{3+}\right]$ was determined by using fluorescence titration data with the help of following equation; ${ }^{[4]}$

$$
\begin{equation*}
\ln \left[\left(\mathrm{F}-\mathrm{F}_{0}\right) /\left(\mathrm{F}_{\max }-\mathrm{F}_{0}\right)\right]=n \ln \left[\mathrm{Au}^{3+}\right]+n \ln \left(\mathrm{~K}_{\text {asscn }}\right) . \tag{1}
\end{equation*}
$$

where n is the number of gold ions associating with each molecule of BOD-Pyr, $\mathrm{K}_{\text {assoc }}$ is the association constant, F_{0} is the fluorescence of the free probe, $\mathrm{F}_{\max }$ is the fluorescence intensity at saturation point, and F is the fluorescence of probe obtained with Au^{3+} addition.

In Water/EtOH (1/1, pH=7.0)

Figure S13: Plot of $\ln \left[\left(\mathrm{F}-\mathrm{F}_{0}\right) /\left(\mathrm{F}_{\max }-\mathrm{F}\right)\right]$ against $\ln \left[\mathrm{Au}^{3+}\right]$; the stoichimetry of BOD-Pyr Au^{3+} association, obtained directly from the slope, is $2.03 \cong 2$. Following equation 1 , the intercept gave an association constant of BOD-Pyr as $4.9 \times 10^{4} \mathrm{M}^{-2}$ (in 0.1 M potassium phosphate buffer, $\mathrm{pH} 7.0 / \mathrm{EtOH}(\mathrm{v} / \mathrm{v}, 1: 1)\left(\lambda_{\mathrm{ex}}: 500 \mathrm{~nm}\right.$, at $\left.25^{\circ} \mathrm{C}\right)$.

In Dichloroethane

Figure S14: Plot of $\ln \left[\left(\mathrm{F}-\mathrm{F}_{0}\right) /\left(\mathrm{F}_{\text {max }}-\mathrm{F}\right)\right]$ against $\ln \left[\mathrm{Au}^{3+}\right]$; the stoichimetry of BOD-Pyr Au^{3+} association, obtained directly from the slope, is $2.03 \cong 2$. Following equation 1 , the intercept gave an association constant of BOD-Pyr as $1.8 \times 10^{5} \mathrm{M}^{-2}$ (in dichloroethane).
15. ${ }^{1} \mathrm{H}$ NMR titration study of BOD-Pyr with Au^{3+}
a) BOD-Pyr

b) BOD-Pyr +2 equiv. $\mathbf{A u}$ (III)

Figure S15: (a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of BOD-Pyr in chloroform-d1 (a drop of methanol-d4). (b) ${ }^{1} \mathrm{H}$ NMR of BOD-Pyr $+\mathrm{Au}^{3+}$ (2 equiv.) in chloroform-d1 (a drop of methanol-d4).
16. Fluorescence titration of BOD-Pyr with Au (III) in dichloroethane

Figure S16: Fluorescence spectra of BOD-Pyr $(10 \mu \mathrm{M})$ in the presence of increasing concentrations of $\mathrm{Au}^{3+}\left(0-20 \mu \mathrm{M}, 0-2\right.$ equiv.) in dichloroethane ($\lambda_{\mathrm{exc}}=500 \mathrm{~nm}, \lambda_{\mathrm{em}}=570 \mathrm{~nm}$ at $25^{\circ} \mathrm{C}$). Inset: Calibration curve.

17. Quantitative detection of residual Au^{3+} content in compound B purified by silica gel chromatography

Detection of residual Au^{3+} content in compound B using BOD-Pyr

A sample of compound $\mathrm{B}(2.0 \mathrm{mg})$ was weighed and dissolved in 2.0 mL of in 0.1 M phosphate buffer/EtOH. Stock solution of BOD-Pyr solution was prepared $\left(1.0 \times 10^{-3} \mathrm{M}\right)$ and $20 \mu \mathrm{~L}$ added into the solution containing compound B . The resulting solution was shaken at room temperature before recording the fluorescence spectra. Based on the standard calibration curve, the content of residual gold ions in compound B was determined as $1.8 \times 10^{-8} \mathrm{~mol} \mathrm{mg}^{-1}$

Detection of residual Au^{3+} content in compound \mathbf{B} using inductively-coupled plasma mass spectroscope (ICP-MS)

A sample of compound $B(2.0 \mathrm{mg})$ prepared in 2.0 mL aqua regia $\left(\mathrm{HNO}_{3}: \mathrm{HCl}, 1: 3 \mathrm{v} / \mathrm{v}\right)$ and incubated 30 min . Then, degradation process was applied with Cem Mars X microwave instrument. The solution was completed to 4.0 mL with deionized water. The resulting solution was subjected to ICP-MS analysis. A standard calibration curve was acquired with the known concentration of Au^{3+} solutions. The measurement was conducted in triplet. The residual gold ions in compound B were measured as $1.27 \times 10^{-8} \mathrm{~mol} \mathrm{mg}^{-1}$.

18. Sensitivity in various organic solvents

Figure S17: Fluorescence intensities of BOD-Pyr (10.0 M) (black), BOD-Pyr ($5.0 \mu \mathrm{M}$) + $\mathrm{Au}^{3+}\left(10 \mu \mathrm{M}, 2\right.$ equiv.) (red) in various organic solvents. ($\lambda_{\text {ex }}: 500 \mathrm{~nm}$, at $\left.25^{\circ} \mathrm{C}\right)$.

19. Determination of quantum yields

Fluorescence quantum yields of BOD-Pyr were determined by using optically matching solutions of Rhodamine $6 \mathrm{G}\left(\Phi_{\mathrm{F}}=0.95\right.$ in water) as a standard ${ }^{[6]}$. The quantum yield was calculated according to the equation;

$$
\Phi_{\mathrm{F}(\mathrm{X})}=\Phi_{\mathrm{FS})}\left(\mathrm{A}_{\mathrm{S}} \mathrm{~F}_{\mathrm{X}} / \mathrm{A}_{\mathrm{X}} \mathrm{~F}_{\mathrm{S}}\right)\left(\mathrm{n}_{\mathrm{X}} / \mathrm{n}_{\mathrm{S}}\right)^{2}
$$

Where Φ_{F} is the fluorescence quantum yield, A is the absorbance at the excitation wavelength, F is the area under the corrected emission curve, and n is the refractive index of the solvents used. Subscripts S and X refer to the standard and to the unknown, respectively.

Solvent	$\begin{gathered} \mathcal{E}(\text { only dye }) \\ \mathbf{M}^{-1} \mathbf{x c m}^{-1} \end{gathered}$	Quantum yield (only dye)	$\begin{gathered} \mathcal{E}\left(\text { dye }+\mathrm{Au}^{3+}\right) \\ \mathbf{M}^{-1} \mathrm{xcm}^{-1} \end{gathered}$	Quantum yield $\left(\mathbf{d y e}+A u^{3+}\right)$
Acetonitrile	21063	1,7	37901	48,1
Dichloroethane	18325	3,8	44112	76,9
Ethanol	21409	5,3	37333	33,2
Tetrahydrofuran	17166	4,1	38947	24,3

Table S1: Quantum yields in different organic solvents.
20. Absorbance and fluorescence spectra of BOD-Pyr at various $\mathbf{p H}$ values

Figure S18: (a) Absorbance and (b) fluorescence spectra of BOD-Pyr ($10 \mu \mathrm{M}$) in 0.1 M phosphate buffer/EtOH (v/v, 1:1) at various pH values (2.0-13.0) $\left(\lambda_{\text {exc }}=500 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right)$. Inset: The variation of fluorescence intensity at 564 nm of BOD-Pyr with $\mathrm{pH}(2.0-13.0)$.

21. Reversibility of $\mathbf{p H}$ Sensing

Figure S19: pH reversibility study of BOD-Pyr $(10 \mu \mathrm{M})$ between pH 7.0 and 3.0 in 0.1 M phosphate buffer/EtOH (v/v, 1:1) ($\lambda_{\text {exc }}=500 \mathrm{~nm}, \lambda_{\mathrm{em}}=564 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$). Inset: Fluorescence photographs of BOD-Pyr at pH 7.0 (left) and 3.0 (right) under illumination with 365 nm light.

22. Determination of $\mathbf{~ P K a ~ o f ~ B O D - P y r ~}$

The acidity constant pK_{a} of BOD-Pyr was calculated by using fluorescence titration method in water:ethanol ($1: 1, \mathrm{v} / \mathrm{v}$) solvent system at various pHs . The linear response was obtained within the range of pH from 2.5 to 6.0 and with the help of a Henderson-Hasselbalch type equation ${ }^{[5]}$;

$$
\begin{equation*}
\log \frac{\left(F_{\max }-F\right)}{\left(F-F_{\min }\right)}=\mathrm{pH}-\mathrm{pK}_{\mathrm{a}} \tag{Eq 2}
\end{equation*}
$$

where, $\mathrm{F}_{\text {min }}$ is the fluorescence of the free probe, $\mathrm{F}_{\max }$ is the fluorescence intensity at saturation point, and F is the fluorescence of probe obtained at different $\mathrm{pHs}, \mathrm{pK}_{\mathrm{a}}$ value was determined as $3.06 \pm$ (0.14) for BOD-Pyr.

Figure S20: Plot of $\log \left(\left(\mathrm{F}_{\max }-\mathrm{F}\right) /\left(\mathrm{F}-\mathrm{F}_{\text {min }}\right)\right)$ as a function of pH for determination of pK_{a} of BOD-Pyr ($\lambda_{\text {ex }}: 500 \mathrm{~nm}$, at $25^{\circ} \mathrm{C}$).
23. ${ }^{1} \mathrm{H}$ NMR of BOD-Pyr

24. ${ }^{13}$ C NMR of BOD-Pyr

25. MALDI-TOF-TOF MS of BOD-Pyr

26. References

1. M. Emrullahoğlu, M. Üçüncü, E. Karakus, Chem. Commun. 2013, 49, 7836.
2. J. D. Buynak, A. S. Rao, G. P. Ford, C. Carver, G. Adam, B. Geng, B. Bachmann, S. Shobassy, S. Lackey, J. Med. Chem. 1997, 40, 3423- 3433.
3. A. S. K. Hashmi, J. P. Weyrauch, W. Frey and J. W. Bats, Org. Lett. 2004, 6, 4391.
4. a) S. Saha, A. Ghosh, P. Mahato, S. Mishra, S. K. Mishra, E. Suresh, S. Das and A. Das, Org. Lett. 2010, 12, 3406-3409; b) J. Hatai, S. Pal, G. P. Jose, T. Sengupta and S. Bandyopadhyay, Rsc Adv. 2012, 2, 7033-7036.
5. Q.-J. Ma, H.-P. Li, F. Yang, J. Zhang, X.-F. Wu, Y. Bai, X.-F. Li, Sens. Actuators B. 2012, 166, 68.
6. A. M. Brouwer, Pure Appl. Chem. 2011, 83, 2213-2228.
