Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

The Synthesis of Shape-Controlled α-MoO₃/Graphene Nanocomposites for

High Performance Supercapacitors

Jinhua Zhou,^{a1} Juan Song,^{a1} Huihua Li,¹ Xiaomiao Feng,^{*1} Zhendong Huang,¹ Shufen Chen,¹ Yanwen Ma,^{*1} Lianhui Wang,¹ and Xiaohong Yan²

¹ Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Syngerstic Innovation Center for Advanced Materials (SICAM);

² College of Electronic Science and Engineering,

Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China * Corresponding authors.

E-mail addresses: iamxmfeng@njupt.edu.cn, iamywma@njupt.edu.cn

^a These authors contributed equally to this work

1. SEM and TEM images of pure MoO₃ amd MG-B-3

Fig. S1. SEM images of pure α-MoO₃(A) and MG-B-3(B), TEM images of MG-B-3(C)

Fig. S1A showed SEM image of α -MoO₃ nanobelts with smooth surface and varied from 3 µm to 10 µm in length. To obtain more information of the formation machnism, the contents of (NH₄)₆Mo₇O₂₄·4H₂O and CTAB were tripled of the initial amount and the corresponding product was named as MG-B-3. Fig. S1B and S1C showed the SEM and TEM image of MG-B-3 that α -MoO₃ nanobelts attached on the surface of graphene and some even wrapped in transparent graphene sheets.

2. Electrochemical characterization

Fig. S2. CV curves at a scan rate of 100 mV·s⁻¹(A) and GCD curves current density of 1 A·g⁻¹(B) of α -MoO₃, graphene, MG-B-3, MG-F-1, MG-B-4 and MG-F-2 (from a to f in order).

Fig. S2A showed the CV curves of α -MoO₃, graphene, MG-B-3, MG-F-1, MG-B-4 and MG-F-2 at a scan rate of 100 mV·s⁻¹. It is easy to distinguish the enclosed area of rGO and MoO₃ were smaller than all α -MoO₃ /graphene composites, implying α -MoO₃ /graphene composites delivered more outstanding capacitive than individual graphene and α -MoO₃. The calculated specific capacitance of α -MoO₃, graphene, MG-B-3, MG-F-1, MG-B-4 and MG-F-2 were 80.4, 101.4, 130.1, 132.0, 152.1 and 209.0 F·g⁻¹, according to the GCD curves at 1 A·g⁻¹ in Fig. S2A. The result showed that MG-F-2 had the highest specific capacitive that might be due to the structural superiority and optimum compositions.