Supporting Information Development of a Cr(III) ion selective fluorescence probe using

organic nanoparticles and its real time applicability

Anu Saini,^a Aman K.K. Bhasin,^a Narinder Singh^{*b} and Navneet Kaur^{*a}

^aCentre for Nanoscience and Nanotechnology (UIEAST), Panjab University Chandigarh, India, 160014. Tel: 91-1722534464; E-mail: navneetkaur@pu.ac.in

^bDepartment of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Panjab, India, 140001, Tel: 91- 1881242176, E-mail: nsingh@iitrpr.ac.in

Figure S1. ¹H NMR spectrum of Ligand 1

Figure S2. Mass spectrum of Ligand 1

Figure S3. IR spectrum of Ligand 1

Figure S4. Fluorescence emission profile showing the stability of organic nanoparticles N1.

Figure S5. Fluorescence emission and absorption spectra of ligand 1 (0.492 μ M) in THF and organic nanoparticles of ligand 1 (N1) in aqueous medium.

Figure S6. Changes in emission profile of ligand 1 (0.492 μM) upon addition of 20 μM of a particular metal ion.

Figure S7. Effect of ionic strength on ONP N1 upon addition of 0-80 equiv. of TBA salt of perchlorate.

Determination of the detection limit.

The limit of detection of organic nanoparticles N1 of 1 for Cr^{3+} ion was determined from the following equation:

Limit of Detection= $(3.3*\sigma)/M$

 σ : Standard Deviation = 0.438

M: slope of the calibration curve =22.45

Table S1. A comparison of present work with reported sensors of Cr³⁺ ion in literature

S.	Name of Journal	Medium of	Detection	Detection	Respon	Mode of	Real Sample
No		studies	Limit	Range	se time	Detection	Analysis
1.	Turn-on fluorogenic and chromogenic detection of Fe^{3+} and Cr^{3+} in a completely water medium with polyacrylamide covalently bonding to rhodamine B using diethylenetriamine as a linker, RSC Advances, 2014, 4, 46332- 46339.	Aqueous Medium	9.9×10 ⁻⁶ mol L ⁻¹	10× 10 ⁻⁵ - 45× 10 ⁻⁵ mol L ⁻¹		Fluorogenic and Chromogenic Detection	
2.	A single molecular probe for multi-analyte (Cr^{3+} , Al^{3+} and Fe^{3+}) detection in aqueous medium and its biological application, ChemComm, 2014, 50 , 12258-12261.	Water- Ethanol (8:2)	0.2 μΜ			Fluorescence Determination	Cell imaging in living cells
3.	A new highly sensitive and selective fluorescence chemosensor for Cr^{3+} based on rhodamine B and a 4,13-diaza-18- crown 6-ether conjugate, RSC Advances, 2014, 4, 2563-2567.	Methanol- Water (3:2)	0.144 μM			Fluorescence Determination	<i>In vitro</i> cell studies
4.	A cell permeable Cr ³⁺ selective chemosensor and its application in living cell imaging, RSC Advances, 2013, 3 , 19978-19984.	Ethanol- Water (1:5) HEPES Buffer (0.1 M, pH 7.4)	3.6×10 ⁻⁷ mol L ⁻¹	3.6×10 ⁻⁷ - 4.5×10 ⁻⁵ mol L ⁻¹	15-20 sec	Fluorescence Determination	Sensor applicability in biological system

5.	Selective and cyclic detection of Cr ³⁺ using poly (methylacrylic acid) monolayer protected gold nanoparticles, New Journal of Chemistry, 2014, 38 , 717-722.	Aqueous Medium	40 μΜ		 Colorimetric Determination	
6.	Visual and near IR (NIR) fluorescence detection of Cr^{3+} in aqueous media via spirobenzopyran ring opening with application in logic gate and bio- imaging, Dalton Transactions, 2014, 43 , 231–239	CH ₃ CN/ HEPES buffer solution (7/3,v/v)	$6.09 \mu M$ with UV titration and $4.6 \mu M$ with fluorescen ce titration		 Visual and NIR fluorescence detection	Applicability of sensor to cell biology
7.	A selective carbazole- based fluorescent probe for chromium (III), Analytical Methods, 2013, 5 , 5549-5554.	Ethanol– water (9:1,v/v)	0.10 μmol L ⁻¹	1.0- 20 μmol L ⁻¹	 Fluorescence Determination	
8.	A highly selective and dual responsive test paper sensor of $Hg^{2+/}Cr^{3+}$ for naked eye detection in neutral water, RSC Advances, 2012, 2 , 3714–3721	Acetonitril e			 Colorimetric and fluorogenic Determination	
9.	Thiophene anchored naphthalene derivative: Cr^{3+} selective turn-on fluorescent probe for living cell imaging, Analytical Methods, 2012, 4 , 2254-2258.	Water- Methanol (1:9,v/v)	1.5×10 ⁻⁷ M	1.0×10 ⁻⁶ - 52×10 ⁻⁶ M	 Fluorescence Determination	Applicability of sensor to living cells
10.	FRET-based sensor for imaging chromium (III) in living cells, ChemComm, 2008, 3387–3389.	Ethanol- Water (2:1,v/v)			 Fluorescent Determination	Monitoring of Cr ³⁺ ion in living cells
11.	$\begin{array}{c c} Recognition \ of \ Hg^{2+} \ and \\ Cr^{3+} \ in \ Physiological \\ Conditions \ by \ a \end{array}$	CH ₃ CN/ HEPES buffer	5.6 ppm		UV-Visible and Fluorescence	Cell imaging studies.

	Rhodamine Derivative	solution (1				Determination	
	and its Application as a	$m_{NI}; 3:2,$					
	Reagent for Cell-	V/V)					
	Imaging Studies,						
	Inorganic Chemistry,						
	2012, 51 , 336-345						
12.	A novel dual-switch	CH ₃ CN-	0.14 nM	30 nM to		Fluorescence	
	fluorescent probe for	HEPES		80 µM		Probe	
	Cr(III) ion based on	buffer					
	PET-FRET processes,	solution					
	Analyst, 2014, 139,						
	3607-3613.						
13.	A ratiometric fluorescent	Tris-HNO ₃	4×10^{-8}	2.0×10^{-7}	Less	Fluorescence	Real sample
	chemosensor for Cr ³⁺	buffered	Μ	- 1.0 ×	than	Chemosensor	analysis on
	based on monomer-	solution		10 ⁻⁵ M	two		river and
	excimer conversion of a				minutes		pond water
	pyrene compound,						-
	Sensors and Actuators B:						
	Chemical, 2014, 203 ,						
	712-718						

Therefore the proposed sensor depicts high selectivity towards Cr^{3+} ion in aqueous medium with limit of detection (64 nM) in nanomolar range which is quite efficient among other reported sensors in literature. Moreover the present sensor is efficiently determining the presence of Cr^{3+} ion in water samples taken from different sources of water.