Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary Information for

Recognition and determination of multi-metal ions based on silver nanoclusters capped by polyethyleneimine with different

molecular weights

Fei Qu^{a,b*}, Qianqian Zhang^{a,b}, Jinmao You^{a,b,c,*}

^a The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China

^b Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine,

Qufu Normal University, Qufu 273165, Shandong, China

^c Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China

*Corresponding authors at: Qufu Normal University, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu, China.

Tel.: +86 537 4456305; Fax: +86 537 4456305.

E-mail addresses:

qufei3323@163.com (F. Qu)

jmyou6304@163.com (J. You).

¹ Fei Qu and Qianqian Zhang contributed equally to this work

Figure S1. TEM images, HRTEM images, UV-vis absorption spectra and fluorescence spectra of AgNC-PEIs.

Figure S2. Stability of Ag NC-PEI 1800.

Figure S3. The responses between fluorescence quenching rates and probe concentrations under the concentration of 8 μ M Hg²⁺ (black: Ag NC-PEI 600; red: Ag NC-PEI 1800; blue: Ag NC-PEI 70000).

Figure S4. Time-dependent fluorescence responses upon addition of 8 μ M Hg²⁺, 8 μ M Cu²⁺, 8 μ M Co²⁺, and 15 μ M Ni²⁺, respectively. (a, Ag NC-PEI 600; b, Ag NC-PEI 1800; c, Ag NC-PEI 70000).

Figure S5. PH-dependent fluorescence quenching rates of Ag NC-PEIs in the presence of 8 μ M Hg²⁺, 8 μ M Cu²⁺, 8 μ M Co²⁺, and 15 μ M Ni²⁺, respectively. (a, Ag NC-PEI 600; b, Ag NC-PEI 1800; c, Ag NC-PEI 70000).

Figure S6. Selectivity of Ag NC-PEI 1800 (a) and Ag NC-PEI 70000 (b) for the detection of Hg²⁺, Cu²⁺, Co²⁺, and Ni²⁺: the concentrations of Hg²⁺ and Cu²⁺ were 8 μ M, Co²⁺ 15 μ M, Ni²⁺ 25 μ M; Pb²⁺, Bi³⁺, Al³⁺, and Fe³⁺ were 30 μ M; Fe²⁺, Cr³⁺, Mn²⁺, and Cd²⁺ were 50 μ M; Mg²⁺, Zn²⁺, Ce³⁺, Se²⁺, Na⁺, and K⁺ were 100 μ M.

Figure S7. Fluorescence emission spectra of Ag NC-PEI 1800 upon addition of different concentrations of Hg²⁺, Cu²⁺, Co²⁺, and Ni²⁺. The insets of a, b, c, and d display the linear ranges for 0.1 nM to 15 μ M Hg²⁺, 0.1 nM to 10 μ M Cu²⁺, 1 nM to 10 μ M Co²⁺, and 1 nM to 20 μ M Ni²⁺, respectively.

Figure S8. Fluorescence emission spectra of Ag NC-PEI 70000 upon addition of different concentrations of Hg²⁺, Cu²⁺, Co²⁺, and Ni²⁺. The insets of a, b, c, and d display the linear ranges for 0.1 nM to 10 μ M Hg²⁺, 0.1 nM to 15 μ M Cu²⁺, 1 nM to 10 μ M Co²⁺, and 1 nM to 20 μ M Ni²⁺, respectively.

Figure S9. Fluorescence emission spectra of Ag NC-PEI 1800 for the detection of Hg^{2+} , Cu^{2+} , Co^{2+} , and Ni^{2+} in the absence (blank) and presence of corresponding masking agents: a, thymine (T) for Hg^{2+} (8 μ M); b, potassium pyrophosphate (PPS) for Cu^{2+} (8 μ M); c, nitrilotriacetic acid (NTA) for Co^{2+} (8 μ M); d, dimethylglyoxime (DMG) for Ni²⁺ (15 μ M).

Figure S10. Fluorescence emission spectra of Ag NC-PEI 70000 for the detection of Hg^{2+} , Cu^{2+} , Co^{2+} , and Ni^{2+} in the absence (blank) and presence of corresponding masking agents: a, thymine (T) for Hg^{2+} (8 μ M); b, potassium pyrophosphate (PPS) for Cu^{2+} (8 μ M); c, nitrilotriacetic acid (NTA) for Co^{2+} (8 μ M); d, dimethylglyoxime (DMG) for Ni²⁺ (15 μ M).

Metal ions	Ag NC-PEIs	Linear range	LOD
Hg ²⁺	Ag NC-PEI 600	0.1 nM-10 μM	35 pM
	Ag NC-PEI 1800	0.1 nM-15 μM	38 pM
	Ag NC-PEI 70000	0.1 nM-10 µM	32 pM
Cu ²⁺	Ag NC-PEI 600	0.1 nM-20 μM	28 pM
	Ag NC-PEI 1800	0.1 nM-10 µM	31 pM
	Ag NC-PEI 70000	0.1 nM-15 μM	35 pM
Co ²⁺	Ag NC-PEI 600	1 nM-20 μM	0.33 nM
	Ag NC-PEI 1800	1 nM-10 μM	0.35 nM
	Ag NC-PEI 70000	1 nM-10 µM	0.29 nM
Ni ²⁺	Ag NC-PEI 600	1 nM-30µM	0.30 nM
	Ag NC-PEI 1800	1 nM-20 μM	0.28 nM
	Ag NC-PEI 70000	1 nM-20 μM	0.33 nM

Table S1. Comparison of the linear ranges and LOD of Hg^{2+} , Cu^{2+} , Co^{2+} , and Ni^{2+} ions by using Ag NC-PEIs as probes.

Table S2. Reproducibility of the proposed method.

	-	• • •	
Ag NC-PEIs	Metal ions	Intra-day RSD (%)	Inter-day RSD (%)
	Hg^{2+}	2.15	2.80
A - NC DEI 1900	Cu^{2+}	1.93	2.08
Ag NC-PEI 1800	Co ²⁺	1.66	1.76
	Ni ²⁺	2.03	2.40