Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information First Report on SILAR Deposited Nanostructured Uranyl Sulphide Thin Films and Its Chemical Conversion to Silver Sulphide

Dipak J. Garole^{**a*, *b*}, Sandesh R. Tetgure^{*a*}, Amulrao U. Borse^{**a*}, Yogesh R. Toda^{*c*}, Vaman J.

Garole^{*a*, *d*}, Babasaheb R. Sankapal^{*e*} and Prashant K. Baviskar^{*f*}

^a School of Chemical Sciences, North Maharashtra University, Jalgaon-425001, India. E-mail:

amulborse@gmail.com

^b Directorate of Geology and Mining, Government of Maharashtra, Nagpur-440010, India. Email:drdipakgarole@gmail.com

^c Thin Films Lab, Department of Physics, Pratap College, Amalner-425401, India

^d Konkan Education Society's S.P. Jain Junior College, Nagothane-402106, India

^e Nano Material and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur-440010, India

^f Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon-

425001, India

Tel: +91-257-2257432

Solubility Study for UO₂S and Ag₂S thin films

Experimental

Initially UO₂S and Ag₂S thin films were kept is 50 mL of double distilled water separately and then absorbance spectra for these thin films were recorded after specific time intervals as 0, 30 and 60 minutes. Then decrease in absorbance at particular wavelength (for UO₂S, wavelength was 445 nm and for Ag₂S, wavelength was 375 nm). Percent removal of respective material with respect to time has been tabulated below,

	UO ₂ S thin film		
Time (Min)	Absorbance at 445 nm	% Removal	
0	0.512	0	
30	0.324	36.7	
60	0.278	45.7	
	Ag ₂ S thin film		
Time (Min)	Absorbance at 375 nm	% Removal	
0	0.757	0	
30	0.668	11.7	
60	0.655	13.5	

Fig. S1.1. Absorbance spectra for UO₂S thin film dipped in double distilled water at different time intervals

Fig. S1.2. Absorbance spectra for Ag₂S thin film dipped in double distilled water at different time intervals

FE-SEM Images

Figure S2.1. FE-SEM images of UO₂S thin films after 30 cycles at different magnification

Figure S2.2. FE-SEM image of UO₂S thin films after 50 cycles at different magnification

Figure S2.3. FE-SEM images of UO₂S thin films after 80 cycles at different magnification

Figure S2.4. FE-SEM images of UO₂S - Ag₂S thin film after 2 hrs at different magnification

Figure S2.5. FE-SEM images of Ag₂S thin film after 24 hrs at different magnification

EDX Analysis Report for UO₂S thin films after 30 cycles

1 723Date:5/20/2013 12:52:38 PMImage size:512 x 384Mag:4000xHV:15.0kV

Scan dataDate:5/20/2013 12:52:38 PMMeasure time:45 sStart:(0,192) End:(511,192)Length:0 µm

EDX Analysis Report for UO₂S thin films after 50 cycles

1 720Date:5/20/2013 12:23:34 PMImage size:512 x 384Mag:4000xHV:15.0kV

2

Scan dataDate:5/20/2013 12:23:34 PMMeasure time:29 sStart:(0,192) End:(511,192)Length:0 µm

EDX Analysis Report for UO₂S thin films

after 80 cycles

1 722Date:5/20/2013 12:38:31 PMImage size:512 x 384Mag:4000xHV:15.0kV

Scan dataDate:5/20/2013 12:38:31 PMMeasure time:30 sStart:(0,192) End:(511,192)Length:0 µm

EDX Analysis Report for UO₂S - Ag₂S thin film after 2 hrs

1 719Date:5/20/2013 12:04:05 PMImage size:512 x 384Mag:4000xHV:15.0kV

EDX Analysis Report for Ag₂S thin film after 24 hrs

1 715Date:5/20/2013 11:06:43 AMImage size:512 x 384Mag:2000xHV:15.0kV

Scan dataDate:5/20/2013 11:06:43 AMMeasure time:40 sStart:(0,192) End:(511,192)Length:0 µm

FT-IR Spectra

Fig. S8.1. FT-IR Spectrum of UO₂S

Fig. S8.2. FT-IR Spectrum of UO₂S-Ag₂S (2 hrs)

Fig. S8.3. FT-IR Spectrum of Ag₂S (24 hrs)

XRD Analysis Report for UO₂S thin film

2Theta (Coupled TwoTheta/Theta) WL=1.54060

2Theta

Visible	lcon	Col	or	Index	ĸ	Name	•	Paren	t S	Sample I	lame		File Nam	ne		Sca	n Ty	pe
Yes				1	UO	2S 1.r	aw	2Theta				U	02S 1.ra	w	Coup	oled Tw	oThe	ta/Theta
										_								
Scan St	atus	Start	Er	nd S	Step S	Size	Tim	ie per S	Step	Temp	eratu	re	Time S	Start	ed	Gonic	omete	er radius
Complete	d	5.000	80.0	000 0.	.030		0.5			25 (Ro	om)		3.0			250.0		
2-theta	The	ta Ch	i F	Phi 🛛	K-Drive	e Y	-Driv	e Z-	Drive	e Aux1	Au	x2	Aux3	An	ode	kα	1	kα2
5.000	2.500	0.00) 0.	.00 0.	.0	0.0)	0.0		0.0	0.0		0.0	Cu		1.540	60	1.54439
kα2 Rat	io	kβ	Ge	enerato	or kV	Gen	erato	or mA	De	etector N	ame	E	Divergen	ce S	Slit	Antis	catte	r Slit
0.50000	0.50000 1.39222 40.0 40.0					Dete	ector 1		1.2	200			0.600					
													_					
Slit Mod	e S	imul. Sl	lit Mo	ode 2	X-Offs	set	Disp	laceme	ent	Y-Scal	e Fact	or	Y-Offs	set	Hu	nidity	Cu	rvature
Fixed				0	000.	0	.000			1			0		n.a.		1.00	0
Thresho	ld E	Enhance	ed	Comp	oute Cr	rystall	inity	Cris	stallin	nity - Fro	m (Cris	stallinity ·	- To	%	-Cryst	allinit	y
1.000	00 No Yes				5.000)		80	0.00	0		22	.5 %					
%-Amor	%-Amorphous Global Area Reduced Are			ea	Comp	bany	Name	Oper	rato	r Name	C	omm	ent					
77.5 %	7.5 % 15888 3577																	

Creation Date/Time 01-Jan-01 12:00:00 AM

Area List #4

Visible	lcon	C	olor	Index	Nam	е	Pare	ent	So	can	Lef	t Angle	Right	Angle	
Yes				1	[5.000 - 80	.000]	Area Lis	st #4	UO2S	1.raw	5.000	C	80.000		
	_					_									
Left Int.	Ri	ght Int.	Obs. Ma	ax d (C	bs. Max)	Gro	ss Int.	Net I	Height	FWF	IM	Chord M	id. d (Chord		Mid.)
1392	419		25.963	3.429	12	1759		639		4.778	1	26.956	3.30501		
I. Breadt	th (Gravity C	C.d (Gr	avity C.)	Raw Ar	ea	Net Area	a C.	Size	K	Ins	str. Width	Use	e I. Brea	dth
-16.059	2	3.725	3.7473	2	57641	-	10266	19.	0	1.000	0.00	0	No		

XRD Analysis Report for UO₂S - Ag₂S thin film dipped in 10 mM AgNO₃ for 2 hrs

2Theta (Coupled TwoTheta/Theta) WL=1.54060

2Theta

Visible	Icor	n	Color	Inc	lex		Name	Э	Pa	rent	Sam	ple N	ame	F	ile l	Name	Э			
Yes				1		AG2S	S UO2	S.raw	2Th	eta				AG2	SU	02S.I	raw			
S	can T	vne		Sca	n Sta	tue	Star	+	nd	Ste	n Size	, ті	me r	ner Ste	n	Ten	nner	ature	Ті	me Started
Coupled	TwoTi	heta/1	Theta	Com	oleted	luo	5.000) 80.0	000	0.030)	0.5			Υ	25 (R	loom)	7.0	
Goniom	otor i	radius	= 2	theta	The	ata	Chi	Phi	¥_ſ	Trive	_ ν_Γ)rivo	7-1	Drive	Δ1	ıv1	Διιν	2 1	\v3	Anode
250.0		aulus	5.0	00	2.50	0	0.00	0.00	0.0	71146	0.0	/IVE	0.0	5116	0.0	1 1	0.0	0.	0	Cu
		_					-		•			-		-	-					
ka1	$K\alpha^{-1}$ $K\alpha^{-2}$ $K\alpha^{-2}$ Ratio $K\beta$ Generator KV				Ge	enerat	tor mA	۱.	Detect	or N	lame	1	Diver	gence	e Slit					
1.54060	1.54	439	0.500	00	1.39	9222	40.0)		40.0	0		D	etector	1		1.	200		
Antisca	tter S	slit	Slit M	ode	Sim	ul. Sl	it Moo	le X	(-Offs	set	Displa	aceme	ent	Y-So	ale	Fact	or	Y-O	ffset	Humidity
0.600	Fixed 0.000			000	0	0.000			1				0		n.a.					
Curvatu		Thro	shold	Enh	2000	4	Comn		vetal	inity	Cri	etallin	itv/	From		`rieta	llinity	<u>и Та</u>	0/	Crystallini
1 000	Survature Inreshold Ennanced Compute Cryst 000 1.000 No Yes			ystan	шпту	5.00	0	ity -		80	000	mmty	/ - TC	20	9 %					
1.000	! ·			110			00				0.00	•			00					, ,,
%-Amor	rphou	s C	alobal	Area	Ree	duce	d Area	a C	ompa	ny Na	ame	Ope	rato	r Name	•	Com	ment			
79.1 %		11	666		2434															

Creation Date/Time 01-Jan-01 12:00:00 AM

XRD Analysis Report for UO₂S thin film dipped in 10 mM AgNO₃ for 24 hrs

(Coupled TwoTheta/Theta)

2Theta

Yes Image: Marking Start End Step Size Time per Step Temperature Time Started Goniometer rate Completed 5.000 80.000 0.030 0.5 25 (Room) 8.0 250.0 2-theta Theta Chi Phi X-Drive Y-Drive Z-Drive Aux1 Aux2 Aux3 Anode ka1 ks 5.000 2.500 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 1.54060 1.54 ka2 Ratio kβ Generator kV Generator mA Detector Name Divergence Slit Antiscatter Slit 0.50000 1.39222 40.0 40.0 Detector 1 1.200 0.600 Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvat Fixed 0.000 0.000 1 0 n.a. 1.000 Mode Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000	Visible	lcon	I Co	or	Ind	ex	Name	e Pa	rent	Sa	mple Na	me	Fil	le Name			Scan	Туре	
Scan Status Start End Step Size Time per Step Temperature Time Started Goniometer ra Completed 5.000 80.000 0.030 0.5 25 (Room) 8.0 250.0 2-theta Theta Chi Phi X-Drive Y-Drive Z-Drive Aux1 Aux2 Aux3 Anode kα1 k 5.000 2.500 0.00 0.00 0.0 0.0 0.0 0.0 0.0 1.54060 1.54 ka2 Ratio kβ Generator kV Generator mA Detector Name Divergence Slit Antiscatter Slit Slit 0.50000 1.39222 40.0 40.0 Detector 1 1.200 0.600 - <	Yes				1	A	G2S.ra	aw 2Th	ieta				AG	2S.raw	Сс	ouple	ed Two	[heta/	Theta
Scan StatusStartEndStep SizeTime per StepTemperatureTime StartedGoniometer raCompleted5.00080.0000.0300.525 (Room)8.0250.02-thetaThetaChiPhiX-DriveY-DriveZ-DriveAux1Aux2Aux3Anodekα1k5.0002.5000.000.000.00.00.00.00.00.00.01.54ka2 RatiokβGenerator kVGenerator mADetector NameDivergence SlitAntiscatter Slit0.500001.3922240.040.0Detector 11.2000.600Slit ModeSimul. Slit ModeX-OffsetDisplacementY-Scale FactorY-OffsetHumidityCurvatFixed0.0000.00010n.a.1.000ThresholdEnhancedCompute CrystallinityCristallinity - FromCristallinity - To%-Crystallinity1.000NoYes5.00080.00017.4 %		-									_	-				. I			
Completed 5.000 80.000 0.030 0.5 25 (Room) 8.0 250.0 2-theta Theta Chi Phi X-Drive Y-Drive Z-Drive Aux1 Aux2 Aux3 Anode kα1 k 5.000 2.500 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 Cu 1.54060 1.54 ka2 Ratio kβ Generator kV Generator mA Detector Name Divergence Slit Antiscatter Slit 0.50000 1.39222 40.0 40.0 Detector 1 1.200 0.600 Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvat Fixed 0.000 0.000 1 0 n.a. 1.000 No Yes 5.000 80.000 17.4 %	Scan St	atus	Start	E	nd	Step	Size	lime	per S	Step	lemp	eratu	re	Time S	starte	d	Gonic	omete	r radius
2-theta Theta Chi Phi X-Drive Y-Drive Z-Drive Aux1 Aux2 Aux3 Anode kα1 k 5.000 2.500 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.54060 1.54 kα2 Ratio kβ Generator kV Generator mA Detector Name Divergence Slit Antiscatter Slit Slit 0.50000 1.39222 40.0 40.0 Detector 1 1.200 0.600 0.600 Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvat Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.000 17.4 %	Complete	d	5.000	80.0	000	0.030		0.5			25 (Ro	om)		8.0			250.0		
2-theta Theta Chi Phi X-Drive Y-Drive Z-Drive Aux1 Aux2 Aux3 Anode kα1 k 5.000 2.500 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.54060 1.54 kα2 Ratio kβ Generator kV Generator mA Detector Name Divergence Slit Antiscatter Slit Slit 0.50000 1.39222 40.0 40.0 Detector 1 1.200 0.600 0.600 Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvat Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.000 17.4 %																			
5.000 2.500 0.00 0.00 0.0 0.0 0.0 0.0 0.0 Cu 1.54060 1.54 ka2 Ratio kβ Generator kV Generator mA Detector Name Divergence Slit Antiscatter Slit 0.50000 1.39222 40.0 40.0 Detector 1 1.200 0.600 Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvate Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.000 17.4 %	2-theta	The	eta Ch	ni	Phi	X-Dri	ve	Y-Drive	Z-I	Drive	Aux1	Αι	JX2	Aux3	An	ode	kα	1	kα2
kα2 RatiokβGenerator kVGenerator mADetector NameDivergence SlitAntiscatter Slit0.500001.3922240.040.0Detector 11.2000.600Slit ModeSimul. Slit ModeX-OffsetDisplacementY-Scale FactorY-OffsetHumidityCurvatFixed0.0000.00010n.a.1.000ThresholdEnhancedCompute CrystallinityCristallinity - FromCristallinity - To%-Crystallinity1.000NoYes5.00080.0017.4 %	5.000	2.50	0.0	0 0	.00	0.0	0	.0	0.0		0.0	0.0		0.0	Cu		1.540	60 1	.54439
kα2 Ratio kβ Generator kV Generator mA Detector Name Divergence Slit Antiscatter Slit 0.50000 1.39222 40.0 40.0 Detector 1 1.200 0.600 Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvate Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.000 17.4 %																			
0.50000 1.39222 40.0 Detector 1 1.200 0.600 Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvat Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.00 17.4 %	kα2 Rat	io	kβ	Ge	enera	tor kV	Ge	enerator	mA	De	tector N	ame		Divergen	ce S	lit	Antis	catter	Slit
Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvat Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.00 17.4 %	0.50000	.50000 1.39222 40.0			C		40.0)		Dete	ector 1		1.2	200			0.600		
Slit Mode Simul. Slit Mode X-Offset Displacement Y-Scale Factor Y-Offset Humidity Curvat Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.00 17.4 %																			
Fixed 0.000 0.000 1 0 n.a. 1.000 Threshold Enhanced Compute Crystallinity Cristallinity - From Cristallinity - To %-Crystallinity 1.000 No Yes 5.000 80.000 17.4 %	Slit Mod	e S	Simul. S	lit M	ode	X-Of	fset	Displa	ceme	nt	Y-Scal	e Fac	tor	Y-Offs	set	Hu	midity	Cur	vature
ThresholdEnhancedCompute CrystallinityCristallinity - FromCristallinity - To%-Crystallinity1.000NoYes5.00080.00017.4 %	Fixed					0.000		0.000		-	1			0	1	n.a.		1.000)
ThresholdEnhancedCompute CrystallinityCristallinity - FromCristallinity - To%-Crystallinity1.000NoYes5.00080.00017.4 %																			
1.000 No Yes 5.000 80.000 17.4 %	Thresho	ld	Enhanc	ed	Con	npute (Crysta	allinity	Cris	tallin	ity - Fro	m	Cris	stallinity ·	- To	%	5-Cryst	allinity	1
	1.000	1.000 No Yes				5.000)		8	0.00	0		17	.4 %					
																			-
%-Amorphous Global Area Reduced Area Company Name Operator Name Comment	%-Amor	%-Amorphous Global Area			rea	Redu	iced A	rea	Comp	any I	Name	Ope	erato	or Name	Co	omm	ent		
82.6 % 20027 3479	82.6 %	32.6 % 20027				3479													

Creation Date/Time 01-Jan-01 12:00:00 AM

Area List #7

Visible	lco	n Co	lor	Index	Name		Parent	t	Scar	n I	Left Ang	gle	Right Ang	gle	Left Int.
Yes				1	[5.000 - 80.00	00] A	Area List #	#7	AG2S.ra	aw 5	.000		80.000		1399
												d. d (Chord			
Right In	t.	Obs. Max	d (Obs	s. Max)	Gross Int.	Net	Height	F۷	VHM	Chord	d Mid. d (Chord		Chord Mid.))	I. Breadth
406	2	28.397	3.14046		1723	634		5.02	26 2	27.464	3.24504		504	- '	16.145
Gravity	C.	d (Gravity	C.) R	aw Area	Net Area	C. 5	Size	K	Instr.	Width	i Use	e I. B	readth		
21.717		4.08902	57	436	-10236	18.1	1.0	000	0.000		No				

2Theta (Coupled TwoTheta/Theta) WL=1.54060

Pattern: PDF 03-065-4429 Radiation: 1.54060 Quality: Indexed

		-					
Formula Ag2 S		d	20	I	h	k	I
Name Silver Sulfic	de	3.44573	25.835	395	1	1	0
Name (mineral)		2.43650	36.861	519	2	0	0
		1.98939	45.561	999	2	1	1
Name (common) - Ag2 S		1.72287	53.116	45	2	2	0
		1.54098	59.984	57	3	1	0
		1.40671	66.404	258	2	2	2
		1.30236	72.522	343	3	2	1
		1.21825	78.440	184	4	0	0
Lattice: Cubic	Mol weight = 247.8	1.14858	84.235	22	4	1	1
S G · Im-3m (229)	Volume [CD] = 115 71	1.08964	89.971	80	4	2	0
	Dx = 7.11	1.03893	95.708	67	3	3	2
	Dm =	0.99470	101.503	8	4	2	2
	1/lcor = 3.450	0.95567	107.419	22	4	3	1
a = 4.87300 alpha =		0.88968	119.951	89	5	2	1
b = beta =		0.86143	126.814	117	4	4	0
c = gamma =		0.835/1	134.360	11	5	3	0
a/b = 1.00000 Z = 2		0.81217	143.046	48	4	4	2
c/b = 1.00000							
NIST M&A collection code: L 1106 4314	6 06						
Sample Preparation: grown at 550C in th	ne stability field of the bcc -form,						
twinned upon cooling through the cubic r	monoclinic transformation at 177C						
450 K. structure refined at 533 K	gn-temperature phase stable above						
Temperature Factor: TF was not given, E	collection code: L 1106 43146 06 eparation: grown at 550C in the stability field of the bcc -form, on cooling through the cubic monoclinic transformation at 177C Pattern Original Remarks: high-temperature phase stable above cture refined at 533 K re Factor: TF was not given, B set to 1.000 for calc re of Data Collection: 260 C						
Temperature of Data Collection: 260 C	llection code: L 1106 43146 06 aration: grown at 550C in the stability field of the bcc -form, cooling through the cubic monoclinic transformation at 177C ittern Original Remarks: high-temperature phase stable above ire refined at 533 K Factor: TF was not given, B set to 1.000 for calc of Data Collection: 260 C g: Magnitude of e.s.d. on cell dimension is >1000 ppm. No ed/abstracted						
Rfactor reported/abstracted	ell dimension is > 1000 ppm. No						
Unit Cell Data Source: Single Crystal							
Structure		1					
Publication: J. Solid State Chem.							
Detail: volume 31, page 69 (1980)							
Authors: Cava, R. J., Reidinger, F., Wuer	nsch, B. J.						
Primary Reference Publication: Calculated from NIST using							
r ubication. Calculated from Wish using							
		4					
Radiation: CuK 1 F	ilter: Not specified						
Wavelength: 1.54060 d	-spacing:						
SS/FOM: 999.9 (0.0004,17)							

PDF 03-065-4429

Pattern: PDF 01-075-6838 Radiation: 1.54060 Quality: Hypothetical

Formula	Ag2 S		d	20	I	h	k	Ι	d	20	I	h	k	Ι
Name	Silver Sulfide	e	7.92045	11.162	73	0	0	1	1.27921	74.051	64	-3	2	5
Namo (minoral)		-	5.18545 4 13591	17.086	567 16	-1	1	1	1.27921	74.051	64 21	-2 1	2	0
			3.95980	22.435	999	-1	0	2	1.25767	75.538	12	2	3	1
Name (commor	n) -Ag2 S		3.95980	22.435	999	0	0	2	1.25767	75.538	12 10	-1	5	3
			3.42974	25.958	797	-1	1	2	1.23696	77.032	19	-1	2	7
			3.42974	25.958	797	0	1	2	1.21743	78.503	35	-3	1	7
			3.14753	28.332	567 567	-1 0	2	3	1.21743	78.503	35 55	-2	5	3
			3.06751	29.087	507	1	1	0	1.21259	78.877	55	2	4	0
1			2.86039	31.245	303	-1	1	3	1.19866	79.977	1	1	0	5
Lattice: Mo	noclinic	Mol. weight = 247.8	2.64020	33.926	339	-1	2	1	1.19800	80.342	45	-3	4	3 4
S.G.: P2	1 (4)	Volume [CD] = 228.2	2.46392	36.436	272	1	1	1	1.19413	80.342	45	-1	5	4
		Dx = 3.61	2.46392	36.436	272	-1	1	3	1.18072	81.445 81.445	30 30	-3 1	3	5
		Dm =	2.42519	37.039	18	1	2	0	1.16354	82.910	29	-3	2	7
1 00000		l/lcor = 4.750	2.31888	38.803	221	-1	2	3	1.16354	82.910	29	-3	2	1
a = 4.20000	alpha =		2.28635	39.378 41.051	207	-1 0	1	4	1.15947	83.266 83.266	27	-2 -1	4	6
b = 6.86000	beta = 125.260		2.09215	43.208	313	1	2	1	1.14719	84.361	18	2	1	3
c = 9.70000	gamma =		2.09215	43.208	313	0	2	3	1.14719	84.361	18	-1	3	7
a/b = 0.61224	Z = 2		2.06814	43.735	140	-2	0	2	1.14326	84.718	43 43	-2	3 5	2
c/b = 1.41399			2.00117	45.278	189	-2	1	3	1.13160	85.799	25	1	2	5
			2.00117	45.278	189	-1 2	3	1	1.13160	85.799	25 26	0	6	1
			1.98011	45.787	527	0	0	4	1.12765	86.173	36	-1	1	8
			1.92092	47.282	3	-2	0	1	1.11647	87.251	15	0	1	7
			1.92092	47.282	3 108	-1 -2	0	5 4	1.11647	87.251 88.694	15 22	-1 2	5	5
			1.90253	47.767	108	1	3	0	1.10200	88.694	22	-1	6	1
ANX: A2X			1.84970	49.221	131	-2	1	1	1.08790	90.155	14	-3	3	7
ICSD Collection Cod	le: 98454		1.78592	49.221 51.103	87	-2	0	5	1.08790	90.133	3	-3	2	8
Hypothetical Structu	re: Structure calculate	ed theoretically	1.78592	51.103	87	-2	2	3	1.08464	90.501	3	1	6	0
beta` = 100.02 Impr	obable structure, cf. 4	4507, 30445	1.72848	52.930 52.930	130 130	-2	1	5	1.07461	91.585 91.585	21 21	0	2	7
Minor Warning: No e	e.s.d reported/abstrac	ted on the cell dimension	1.71500	53.379	111	2	0	0	1.06164	93.033	16	-2	1	9
Unit Cell Data Source	e: Powder Diffraction		1.71500	53.379	111	0	4	0	1.06164	93.033	16	1	5	3
			1.67599	54.724	135	-2 -1	2	5	1.04918	94.478	19 19	0	6	3
			1.66367	55.163	64	2	1	0	1.04602	94.853	44	-3	4	6
			1.66367	55.163	64 10	-1	3	4	1.04602	94.853	44	-3	4	2
			1.58400	58.195	55	-2	2	5	1.03709	95.933 95.933	21	-4	5	5
			1.58400	58.195	55	0	0	5	1.03398	96.316	36	-4	1	6
			1.57374	58.612 58.612	151 151	-1 -1	0	6	1.03398	96.316	36	-4	0	4
			1.54347	59.877	31	-2	3	3	1.02534	97.400	9	-2	2	9
			1.54347	59.877	31	0	1	5	1.02253	97.759	25	-3	3	8
			1.53378	60.294 60.294	102	-2 -2	1	6 2	1.02253	97.759 98.852	25 11	-1 -4	3	8
			1.50584	61.533	44	2	0	1	1.01413	98.852	11	0	3	7
			1.50584	61.533	44	1	2	3	1.00326	100.313	31	-4	2	5
Structure			1.47082	63.164	67	-1	3	5	0.99263	100.313	5	-2	1	3
Publication: Solid St	ate lonics		1.43813	64.773	37	0	2	5	0.99263	101.795	5	-1	1	9
Authors: Kashida, S	Watanabe N. Hase	egawa T, lida H, Mori M	1.43813	64.773 66.363	37	-2	4	1	0.99005	102.163	40 40	-4 -2	4	8
Savrasov, S.			1.40022	66.752	3	-3	0	4	0.98247	103.264	22	-4	2	7
Primary Reference			1.40022	66.752	3	-1	4	4	0.98247	103.264	22	-1	6	5
Publication: Calculat	ted from ICSD using F	POWD-12++	1.37875	67.931	31	-3	2	5 1	0.97995	103.637	15	-3 1	э 5	4
			1.37187	68.319	56	-3	1	4	0.97249	104.763	14	-2	3	9
			1.37187	68.319 69.472	56 82	1	1	4	0.97249	104.763	14 21	-3 -4	5	3
Padiation: Cul	1 I r:	tor Not specified	1.35187	69.473	83	-3	5	5 1	0.96290	106.256	21	-4	2	5
Wavelength: 1 540		enacing:	1.32625	71.015	2	-1	0	7	0.96047	106.644	14	-3	0	10
SS/EOM 201 5		opaoling.	1.32625	71.015 71.393	2 93	-2 -3	4 0	3	0.96047 0.95349	106.644 107.777	14 16	3 -4	0 3	2
33/FUM. 291./	(0.0010,09)		1.32015	71.393	93	1	4	2	0.95349	107.777	16	3	3	1
			1.30222	72.531	50	-1	1	7	0.95130	108.139	43	-4	3	6
			1.30222	72.531 72.915	50 184	-1 -2	5 3	6	0.95130	108.139	43 7	-4	0	2 9
			1.29630	72.915	184	-2	4	4	0.94449	109.287	7	1	6	3
			1.27921	74.051	64	-3	2	5	0.94228	109.667	7	2	3	4

d	20	1	h	k	I
0.94228	109.667	7	2	3	4
0.94228	109.667	7	1	7	0
0.93568	110.823	11	-4	1	9
0.93568	110.823	11	-1	7	3
0.92708	112.380	6	2	0	5
0.92708	112.380	6	0	6	5
0.91874	113.949	27	-4	3	3
0.91874	113.949	27	1	7	1
0.91046	115.571	12	-4	2	9
0.91046	115.571	12	-4	0	1
0.90861	115.942	6	-4	3	8
0.90861	115.942	6	-1	7	4
0.90256	117.180	4	-4	1	1
0.90256	117.180	4	1	5	5
0.89490	118.804	12	-4	4	5
0.89490	118.804	12	2	2	5
0.89303	119.212	17	-1	0	10
0.89303	119.212	17	1	4	6
0.88744	120.455	7	2	5	3
0.88744	120.455	7	-2	7	3
0.88555	120.883	47	-4	1	10
0.88555	120.883	47	2	4	4
0.88000	122.170	23	-4	2	1
0.88000	122.170	23	-3	6	5
0.87823	122.589	17	-3	5	8
0.87823	122.589	17	3	5	0
0.87283	123.898	21	-4	3	9
0.87283	123.898	21	-3	1	11
0.86595	125.631	6	-4	4	3
0.86595	125.631	6	-1	6	7
0.85907	127.448	14	-2	1	11
0.85907	127.448	14	2	3	5
0.85737	127.910	29	-4	4	8
0.85737	127.910	29	4	0	0
0.85239	129.296	16	-3	2	11
0.85239	129.296	16	3	2	3
0.84589	131.187	7	-4	3	1
0.84589	131.187	7	-2	5	9
0.83955	133.133	17	-2	2	11
0.83955	133.133	17	-3	6	7
0.83797	133.631	35	-5	0	6
0.83797	133.631	35	-3	4	10
0.83326	135.169	16	-4	1	11
0.83326	135,169	16	-5	1	7

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

PDF 01-075-6838

2Theta WL=1.54060

Pattern List #9

Show	lcon	Color	Index	Name	Parent	Scan	Pattern #	Compound Name
Yes			1	PDF 01-075-6838	Pattern List #9	AG2S.raw	PDF 01-075-6838	Silver Sulfide
Yes			2	PDF 03-065-4429	Pattern List #9	AG2S.raw	PDF 03-065-4429	Silver Sulfide

Formula	Y-Scale	I/Ic DB	I/Ic User	S-Q	Added Reference	d x by	Scan WL	Wavelength
Ag2 S	51.2210 %	4.750		59.38 %		1.0000	Yes	1.54060
Ag2 S	25.4469 %	3.450		40.62 %		1.0000	Yes	1.54060

System	Space Group	а	b	с	alpha	beta	gamma	Ζ	Volume	Density
Monoclinic	P21 (4)	4.20000	6.86000	9.70000		125.260		2	228.20	3.606
Cubic	lm-3m (229)	4.87300						2	115.71	7.112

Cell Tuned	F (N)
No	F30= 291.7(0.0015, 69)
No	F17= 999.9(0.0004, 17)