Electronic Supplementary Information

Template-free synthesis of Fe_3O_4 nanorod bundles and its highly efficient peroxidase mimetic activity for degradation of organic dye pollutants with H_2O_2

Diganta Bhuyan,^a Sudhir S Arbuj^c and Lakshi Saikia*^{a,b}

 ^aMaterials Science Division, CSIR-North East Institute of Science and Technology Jorhat–785006, Assam, India
^bAcademy of Scientific and Innovative Research, New Delhi, India
^c Centre for Materials for Electronics Technology, Off Pashan Road, Panchwati, Pune– 411008, India

*Corresponding author. Tel.: +91 376 2370 081; fax. +91 376 2370 011 *E-mail address: l.saikia@gmail.com

Characterization:

The powder XRD pattern was recorded in the 2 θ range of 10-70° with an automated X-ray diffractometer (Model ULTIMA IV, Rigaku, Japan) using Cu K α radiation (λ =1.5418Å) at a scan rate of 3°/min. The FT-IR spectra (4000–400 cm⁻¹) were recorded as KBr pellet in a Shimadzu IR affinity-1 spectrophotometer. Thermal analysis was carried out with thermal analyzer (Model SDT Q600) under N₂ atmosphere with a heating rate of 10 °C/min. The magnetic property of the material was tested on a Lake Shore CRYOTRONICS (Model 7410 series) vibrating-sample magnetometer (VSM) at 298 K. The morphology of the samples was examined using Hitachi S-4800 field emission scanning electron microscopy (FE-SEM). The TEM images were taken using JEOL (Model JEM-2011). Zeta potential was measured in a Malvern Zetasizer, Nano ZS (Prior to measurement a definite amount of sample was dispersed in double distilled water). pH was measured with EUTECH pH 700 instrument.

Typical procedure for recyclability study:

The recyclability of Fe_3O_4 nanorod catalyst was studied for three cycles. The Photo Fenton-like degradation reaction using Fe_3O_4 nanorod catalyst was performed using the same aforementioned procedure. Prior to reuse, the used Fe_3O_4 nanorod catalyst was collected under magnetic field, washed with distilled water and ethanol and then dried in vacuum desiccators.

Fig. S1 FT-IR spectra of Fe_3O_4 nanorod bundles.

Fig. S2 TGA curve of Fe_3O_4 nanorod bundles.

Fig. S3 Room temperature magnetization hysteresis loop of Fe₃O₄ nanorod bundles.

Fig. S4 (a) and (b) HRTEM image showing the lattice fringes of the as-synthesized Fe_3O_4 nanorods.

Fig. S5 (a) UV-vis absorption spectra of CV dye during Photo Fenton-like degradation process at successive time interval using only Fe_3O_4 nanorods catalyst and (b) its Pseudo first order kinetics curve.

Fig. S6 (a) UV-vis absorption spectra of CV dye during Photo Fenton-like degradation process at successive time interval using only H_2O_2 and (b) its Pseudo first order kinetics curve.

Fig. S7 Recyclability study of Fe_3O_4 nanorod bundles catalyst for degradation of CV dye.

Fig. S8 A tentative mechanism for the activation H_2O_2 on the Fe_3O_4 nanorod bundles catalyst for degradation of CV dye under solar light.