Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information

Nanocomposite for Detoxification of Drinking Water: Effective and Efficient Removal of Fluoride and Bactericidal Activity

Ankita Dhillon and Dinesh Kumar

Department of Chemistry, Banasthali University, Rajasthan-304022, INDIA

New Journal of Chemistry

Supplementary Data

Fig. S1 Effect of adsorption on pore volume.

Fig. S2: N₂ adsorption–desorption isotherms.

Fig. S3: XRD patterns of adsorbent.

Fig. S4: EDS spectrum of adsorbent (pre–adsorption).

Fig. S5: EDS spectrum of adsorbent (post-adsorption).

Fig. S6: Langmuir isotherm outlines.

Fig. S7: Temkin isotherm outlines.

Table S1: Isotherm	models an	d their	linear for	ms
--------------------	-----------	---------	------------	----

Isotherm	Linear form	Plot
Freundlich $q_e = k_F C_e^{1/n}$	$\log q_e = \log k_F + 1/n \times \log C_e$	$\log q_e vs \log C_e$

Langmuir $q_e = Q^0 bC_e / 1 + bC_e$	$C_e/q_e = (1/Q^0b) + (C_e/Q^0)$	$1/q_e \text{ vs } 1/C_e$
Temkin $q_e = \frac{RT}{b_T} \ln(A_T C_e)$	$q_e = \frac{RT}{b_T} \ln(C_e) + \frac{RT}{b_T} \ln(C_e)$	$q_e vs ln(C_e)$
D–R $q_e = (q_s) \exp(-K_{ad}\epsilon^2)$	$\ln(q_e) = \ln(q_s) - (K_{ad}\epsilon^2)$	$ln(q_e)$ vs ϵ^2

Table S2: Langmuir and Temkin isotherm constants at different temperatures

	Langmuir isotherm				Temkin isotherm			
Temperature	K _{ad}	q _s	3	R^2	b _T	A _T	R^2	
(K)	(mol^2/kJ^2)	(mg/g)			(kJ/mol)	(L/g)		
303	-0.0147	4.10	151	0.952	12.21	1.05	0.944	
313	-0.0154	4.10	174	0.973	12.41	1.44	0.956	
323	-0.0160	4.20	151	0.941	13.72	2.70	0.914	

Fig. S8: The pseudo–first–order plots.

Pseudo-second-order				Pseudo-first-order			Intra-particle		
Temperature (K)	h	qe	R^2	k _{ad}	qe	R^2	q_t	С	\mathbb{R}^2
303	0.031	0.025	0.956	0.188	14.5	0.935	0.018	0.075	0.494
313	0.031	0.024	0.972	0.204	15	0.936	0.019	0.076	0.504
323	0.029	0.023	0.982	0.188	16	0.937	0.020	0.078	0.506

Fig. S9: The intra–particle plots.

Fig. S10: Potentiometric titration curves.

Fig. S11: Effect of co-existing anions.

Fig. S12: Relationship between number of cycles and adsorption efficiency.

Fig. S13: UV–Visible spectrophotometric calculation of IC₅₀ values of standard antibiotics.