Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

ELECTRONIC SUPPLEMENTARY MATERIAL (ESI) FOR NEW JOURNAL OF CHEMISTRY. THIS JOURNAL IS © THE ROYAL SOCIETY OF CHEMISTRY AND THE CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 2015

Supplementary Information, New Journal of Chemistry

Downsizing K-CHA zeolite by a postmilling-recrystallization method for enhanced basecatalytic performance

Chokkalingam Anand,^a Takeshi Kaneda,^b Satoshi Inagaki,^c Sae Okamura,^c Hiroki Sakurai,^c Kyosuke Sodeyama,^a Taiji Matsumoto,^b Yoshihiro Kubota,^c Tatsuya Okubo^a and Toru Wakihara^a*

^aDepartment of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

^bDepartment of Materials Technology, Industrial Technology Centre of Tochigi Prefecture, 1-5-20, Yuinomori, Utsunomiya, 321-3226, Japan.

^cDivision of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

Fig. S1 N₂ adsorption-desorption isotherms of raw, milled and RC5 K-CHA samples.

Sample	2M KOH added	RC temperature	RC duration	Crystallinity	Yield	BET surface area	Product
	(g)	(K)	(hour)	(%)	(%)	(m² g-1)	yield in
							the
							catalytic
							reaction
							(%) ^a
Raw	0	0	0	100	100	11	35
Milled	0	0	0	11	100	96	46
RC1	0.4	413	5	46	94	110	50
RC4	1.2	413	2	79	92	77	61
RC5	1.2	413	5	80	91	65	80

Table S1. Comparison of catalytic performance of K-CHA samples

a. Reaction conditions: catalyst, 30 mg; temperature, 353 K; time, 60 min; benzaldehyde, 1.2 mmol (130 mg); ethyl cyanoacetate, 1.4 mmol (160 mg); solvent, EtOH (ca. 3.0 mL).

Results and Discussion

The average surface area for H-CHA samples is approximately between 500-600 m² g⁻¹, (see references below) majority of which are confined into their microporous region. However, impregnation of potassium tends to block the microporous entrances of the K-CHA zeolite prohibiting the detection of these surfaces during N₂ adsorption-desorption analysis. Therefore, the surface area of K-CHA samples listed in Table 2 and Table S1, presumably is due to the external surface area as observed from their respective N₂ adsorption-desorption isotherms displayed in Figure S1. In addition, Figure S1 shows a variation in the volume of nitrogen adsorbed (y axis) by K-CHA samples relative to their respective surface areas (Table 2) and particle size differences (Fig. 2).

Table S1 compares the catalytic performances of raw, milled and recrystallized K-CHA samples. The catalytic yield increased from 35 to 80 % as a result of bead-milling and postmilling-recrystallization. The KOH content, time and temperature used for recrystallizing RC5 were found to be optimum as it yielded 80% catalytic product. Further, the lower yield of RC4 (61%), while possessing crystallinity equivalent to RC5, strongly reiterates the fact that the recrystallization conditions (longer RC duration, 5 hours) used for RC5 is highly inevitable for enhanced catalytic performance.

References

- 1 H.-X. Li, W. E. Cormier, B. Moden, EU Patent 2512988, 2011.
- 2 F. N. Ridha, Y. Yang, P. A. Webley, *Micropor. Mesopor. Mater.*, 2009, 117, 497.