Electronic Supplementary Information

Synthesis of $\mathbf{T i}, \mathbf{Z r}$, and Hf complexes with a new tetra-azane ligand by one-pot HCl-elimination and their properties as catalysts for production of UHMWPE

Xiangdong Ji, Wei Yao, Xuyang Luo, Wei Gao,* Ying Mu*

The State Key Laboratory for Supramolecular Structure and Materials, School of Chemistry, Jilin

University, 2699 Qianjin Street, Changchun 130012, People's Republic of China

1. A typical procedure for the attempted synthesis of free ligands 1,2-[(2-(2,6-R $\left.\left.\mathbf{R}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$

${ }^{n} \mathrm{BuLi}(10 \mathrm{~mL}, 20 \mathrm{mmol})$ in n-hexane was added to a solution of o-phenylenediamine $(1.08 \mathrm{~g}$, 10 mmol) in 50 mL of THF at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and canula transferred into a solution of ortho $-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\left(\mathrm{CH}=\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)(2.27 \mathrm{~g}, 10$ $\mathrm{mmol})$ in 50 mL of THF at $50^{\circ} \mathrm{C}$. After the mixture was stirred for 6 h , another equiv of ${ }^{\mathrm{n}} \mathrm{BuLi}(5$ $\mathrm{mL}, 10 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. The resulted reaction mixture was warmed to room temperature and one more equiv of ortho- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\left(\mathrm{CH}=\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)(2.27 \mathrm{~g}, 10 \mathrm{mmol})$ was added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 10 hours and the solvent was removed under vacuum. The residue was quenched with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined organic phase was dried with anhydrous MgSO_{4}, filtered and concentrated by distillation under reduced pressure to give the residue as a deep yellow solid. The residue was isolated and purified by column chromatography on silica gel eluting with ethyl acetate/petroleum ether $\left(\mathrm{v} / \mathrm{v}=1: 15,1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to give pure byproducts $\mathbf{D}(0.8 \mathrm{~g}, 36.6 \%)$ and $\mathbf{E}(1.8 \mathrm{~g}, 41.4 \%)$, but no expected product. D:Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2}$ (193.08): C, 80.81; H, 4.69; N, 14.50. Found: C, 80.43; H, 4.61; N, 14.65. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 12.02(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArNHAr}), 8.74(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{NAr}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar} H), 7.22-7.33(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar} H), 7.00(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 6.85(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): 159.62, 144.47, 140.01, 137.10, 135.76, 132.17, 126.99, 121.90, 119.45, 117.68, 117.27, 117.02, 112.52ppm. E: Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2}$ (328.19): C, 84.11; H, 7.37; N, 8.53. Found: C, 84.33; H, 7.51; N, 8.45. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) δ 10.52 ($\mathrm{s}, 1 \mathrm{H}, \operatorname{ArNHAr}$), 8.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{NAr}$), 7.34 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H$), 7.07-7.18 (m, 4H, $\mathrm{Ar} H), 6.96(\mathrm{t}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.71(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H), 2.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): 165.94, $150.79,148.47,137.49,135.76,134.54,132.20,128.37,128.11,127.66,126.33,123.79,116.71$, $115.34,111.76,18.52,18.33 \mathrm{ppm}$.

D

E

2. Molecular geometries of compound \mathbf{E}

Figure S1. Perspective view of \mathbf{E} with thermal ellipsoids drawn at 30% probability level. Hydrogen atoms are omitted for clarity. The selected bond lengths (\AA) and angles (deg.): C1N2 1.365(3), C7-N1 1.272(3), C8-N2 1.425(3), C16-N1 1.425(3); C7-N-C16 119.8(2), C1-N2-C8 123.5(2).

3. A typical DSC curve of polyethylene

Figure S2. DSC curve of the polyethylene sample from entry 7 in Table 3.

4. NMR spectrum of a typical polyethylene sample

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of the polyethylene sample from entry 1 in Table 3 at $135{ }^{\circ} \mathrm{C}$ with $o-\mathrm{C}_{6} \mathrm{D}_{4} \mathrm{Cl}_{2}$ as the solvent.

