Electronic Supplementary Information

A sandwich-type zinc complex from rhodamine dye based ligand: a potential fluorescent chemosensor for acetate in human blood plasma and a molecular logic gate with INHIBIT function

Manisha Devi,^{*a*} Abhimanew Dhir,^{*a*} Chullikkattil P. Pradeep^{*a**}

School of Basic Science, Indian Institute of Technology Mandi, Kamand-175 005, Himachal Pradesh, India.

Fax: +91 1905 267009; Tel: +91 1905 267045; E-mail: pradeep@iitmandi.ac.in

S. No.	Figure Caption	Figure No	Page No
1.	IR spectrum of Zn-RI.	SI	S2
2.	¹ H NMR spectrum of Zn-R1 .	S2(a)	S 3
3.	Expanded ¹ H NMR spectrum of Zn-R1	S2(b)	S 3
4.	¹³ C NMR spectrum of Zn-R1 .	S3	S4
5.	Mass spectrum of Zn-R1 .	S 4	S5
6.	Theoretical isotopic pattern of Zn-R1 mass peak.	S5(a)	S6
7.	Experimental isotopic pattern of Zn-R1 mass peak.	S5(b)	S 6
8.	Job's Plot for stoichiometric calculation of \mathbf{R} and Zn^{2+} .	S 6	S 7
9.	Detection limit of R towards Zn^{2+} .	S 7	S 8
10.	Absorption spectra of R on addition of Zn^{2+} .	S 8	S9
11.	Fluorescence spectra of Zn-R1 on addition of different anions.	S 9(a)	S10
12.	Absorption spectra of Zn-R1 on addition of CH_3COO^- .	S9(b)	S10
13.	Stern-Volmer plot for the determination of quenching constant.	S10	SII SII
14.	Job s Plot for stoichiometric calculation of Zn -RI and CH ₃ COO.	511	S12
15.	Detection limit of Zn-R1 towards CH ₃ COO ⁻ .	\$12	S13
16.	Fluorescence spectra of $Zn-R1$ on addition of CH_3COO^- in	S13(a)	S14
	DMSO:H ₂ O (9.5:0.5 %, <i>v</i> / <i>v</i>).		
17.	Fluorescence spectra of $Zn-R1$ on addition of CH_3COO^- in	S13(a)	S14
	DMSO:H ₂ O (7:3 %, <i>v</i> / <i>v</i>).		
18.	IR spectrum of Zn-R1 in presence of CH_3COO^- .	S14	S15
19.	Mass spectrum of Zn-R1 in presence of CH ₃ COO ⁻ .	S15(a)	S16
20.	Extended mass spectrum of Zn-R1 in presence of CH ₃ COO ⁻	S15(b)	S16
21.	¹ H NMR of Zn-R1 in presence of CH_3COO^- .	S16(a)	S17
22.	Expanded ¹ H NMR of Zn-R1 in presence of CH_3COO^- .	S16(b)	S 18
23.	Data of fluorescence life time analysis.	Table S1	S 18
24.	Absorbance spectra of Zn-R1 in CH ₃ CN: H_2O on addition of PLAS (B).	S17	S19
25.	Detection limit of Zn-R1 towards CH ₃ COO ⁻ present in PLAS (B).	S18	S20
26.	Stern-Volmer plot for the determination of quenching constant for CH_3COO^- present in PLAS (B).	S19	S21
27.	Single crystal X-ray diffraction data.	Table S2-	S22-S25
		S 3	

IR spectrum of Zn-R1

Figure S1 IR spectrum of Zn-R1.

Figure S2(a) ¹H NMR spectrum of **Zn-R1**.

Figure S2(b) Expanded region of ¹H NMR spectrum of Zn-R1.

¹³C NMR spectrum of Zn-R1

Figure S3 ¹³C NMR spectrum of Zn-R1.

Mass spectrum of Zn-R1

Figure S4 Mass spectrum of Zn-R1.

Figure S5(a) Theoretical isotopic pattern of m/z 1391.43 peak representing **Zn-R1** ($C_{32}H_{40}N_3O_5$)₂Zn(ClO₄)₂.2H₂O-H) calculated using compass isotope pattern.

Figure S5(b) Experimental isotopic pattern of m/z 1391.56 peak representing Zn-R1 (C₃₂H₄₀N₃O₅)₂Zn(ClO₄)₂.2H₂O-H).

Determination of the stoichiometry of R and Zn^{2+}

Figure S6 Job's plot for the determination of the stoichiometry of interaction of **R** with Zn²⁺. $\lambda_{ex} = 530$ nm. 10 µm solutions of **R** and Zn²⁺ were used for this study.

Determination of the detection limit of R towards Zn^{2+}

Figure S7 Fluorescence intensity at 585 nm of **R** in CH₃CN with different amounts of Zn²⁺. $\lambda_{ex} = 530$ nm.

Absorption spectra of R on addition of Zn²⁺

Figure S8 Absorption spectra of **R** (5×10⁻⁶ M) upon addition of Zn^{2+} (4.29 equivalents). Inset shows change in color & absorbance with the addition of increasing amounts of Zn^{2+} .

Figure S9(a) Fluorescence spectra of **Zn-R1** (5×10⁻⁶ M) upon addition of 6.0 equiv. of various anions (F⁻, Cl⁻, Br⁻, I⁻, CH₃COO⁻, H₂PO₄⁻, NO₃⁻, ClO₄⁻, CN⁻, SCN⁻, SO₄²⁻, HSO₃⁻, OH⁻, CO₃²⁻ and HCO₃⁻) in CH₃CN:H₂O (9.5:0.5 %, v/v); $\lambda_{ex} = 530$ nm.

Figure S9(b) UV-vis spectra of **Zn-R1** (5×10^{-6} M) upon addition of 6.0 equiv. of CH₃COO⁻ in CH₃CN:H₂O (9.5:0.5 %, ν/ν). Inset shows the colour change as well as the changes in absorbance values on addition of various equivalents of acetate ions.

Stern-Volmer constant

Figure S10 Stern-Volmer plot of the fluorescence response of \mathbf{Zn} -R1 to [CH₃COO⁻].

I/Io=Ae^{Kx}+B

Quenching Constant = $A \times K$, where K = 1/t

Determination of the stoichiometry of interaction between Zn-R1 and CH_3COO^-

Figure S11 Job's plot for the determination of the stoichiometry of interaction between **Zn-R1** and CH₃COO⁻. $\lambda_{ex} = 530$ nm. 10 µm solutions of **Zn-R1** and CH₃COO⁻ were used for this study.

Determination of the detection limit of Zn-R1 towards CH₃COO⁻

Figure S12 Fluorescence intensity at 585 nm of **Zn-R1** in CH₃CN:H₂O (9.5:0.5 %, ν/ν) with different amounts of CH₃COO⁻. $\lambda_{ex} = 530$ nm.

Figure S13(a) Fluorescence spectra of **Zn-R1** (5×10^{-6} M) upon addition of 6.0 equiv. of CH₃COO⁻ in DMSO:H₂O (9.5:0.5 %, ν/ν). Inset shows the colour change as well as the changes in absorbance values on addition of various equivalents of acetate ions.

Figure S13(b) Fluorescence spectra of **Zn-R1** (5×10^{-6} M) upon addition of 6.0 equiv. of CH₃COO⁻ in DMSO:H₂O (7:3 %, v/v). Inset shows the colour change as well as the changes in absorbance values on addition of various equivalents of acetate ions.

Figure S14 IR spectrum of Zn-R1 after addition of CH₃COO⁻.

Figure S15(a) Mass spectrum of Zn-R1 after addition of CH₃COO⁻ (m/z range 200-1100 is shown).

Figure S15(b) Mass spectrum of Zn-R1 after addition of CH₃COO⁻ (m/z range 300-1700 is shown).

Figure S16(a) ¹H NMR spectra of Zn-R1 in DMSO-d₆ after addition of CH₃COO⁻.

Figure S16(b) Expansion of ¹H NMR spectra of **Zn-R1** in DMSO-d₆ after addition of CH₃COO⁻ in the region of 4.55 to 3.2 ppm.

Table S1:	Fluorescence life time	measurement data of R, Zn-R1	1 and Zn-R1 in	presence of CH ₃ COO ⁻ .
-----------	------------------------	------------------------------	----------------	--

Components	R	Zn-R1	Zn-R1 +CH ₃ COO ⁻
τ_1 [ns]	0.211	0.581	0.156
f_1	80%	15%	89%
$\tau_2 [ns]$	1.311	1.184	1.381
f_2	20%	85%	11%
χ^2	1.175885	1.048132	1.171815

Absorption spectra of Zn-R1 on addition of CH₃COO⁻ present in artificial blood plasma

Figure S17 Absorption spectra of **Zn-R1** (5×10^{-6} M) upon addition of PLAS (B) (2.66 equivalents). Inset shows change in colour & absorbance with the addition of increasing amounts of PLAS (B).

Determination of the detection limit of Zn-R1 towards CH₃COO⁻ present in artificial blood plasma

Figure S18 Fluorescence intensity at 585 nm of **Zn-R1** in CH₃CN:H₂O (9.5:0.5 ν/ν) with different amounts of PLAS (B). $\lambda_{ex} = 530$ nm.

Figure S19 Stern-Volmer plot of the fluorescence response of **Zn-R1** to $[CH_3COO^-]$ present in PLAS (B).

 $I/Io = Ae^{Kx} + B$

Quenching constant = $A \times K$, where K = 1/t

X-ray crystallography and structure analysis

C64 H88 Cl4 N6 O30 Zn		
1628.57		
293(2) K		
0.71073 Å		
Triclinic		
P -1		
a = 12.3279(12) Å	$\alpha = 104.215(6)^\circ$	
b = 12.8597(9) Å	$\beta = 100.333(7)^{\circ}$	
c = 13.1221(9) Å	$\gamma=105.122(7)^\circ$	
1879.7(3) Å ³		
1		
1.439 Mg/m ³		
0.556 mm ⁻¹		
852		
0.2907 imes 0.26 imes 0.1383		
1.724 to 28.337°.		
-16<=h<=10, -12<=k<=16, -14<=l<=16		
Full-matrix least-squares on F ²		
10473		
7861 / 4 / 489		
1.053		
R1 = 0.0827, wR2 = 0.2386		
R1 = 0.1081, $wR2 = 0.2735$		
f. peak and hole $0.803 \text{ and } -0.518 \text{ e.}\text{Å}^{-3}$		
	C64 H88 Cl4 N6 O30 1628.57 293(2) K 0.71073 Å Triclinic P -1 a = 12.3279(12) Å b = 12.8597(9) Å c = 13.1221(9) Å 1879.7(3) Å ³ 1 1.439 Mg/m ³ 0.556 mm ⁻¹ 852 0.2907 × 0.26 × 0.138 1.724 to 28.337°. -16<=h<=10, -12<=k Full-matrix least-squa 10473 7861 / 4 / 489 1.053 R1 = 0.0827, wR2 = 0. R1 = 0.1081, wR2 = 0. 0.803 and -0.518 e.Å ⁻³	

Table S2: The crystallographic data and structure refinement parameters of Zn-R1

Bond	Bond length[Å]	Bond	Bond length[Å]
Zn(1)-O(4)	2.031(4)	C(1)-C(2)	1.364(5)
Zn(1)-O(4)#1	2.031(4)	C(20)-C(19)	1.501(5)
Zn(1)-O(2)#1	2.055(3)	C(19)-C(18)	1.393(5)
Zn(1)-O(2)	2.055(3)	C(19)-C(14)	1.399(5)
Zn(1)-O(3)	2.115(3)	C(14)-C(15)	1.381(5)
Zn(1)-O(3)#1	2.115(3)	C(14)-C(7)	1.488(5)
Cl(3)-O(11)	1.372(7)	C(12)-C(11)	1.419(6)
Cl(3)-O(10)	1.377(6)	C(7)-C(8)	1.398(5)
Cl(3)-O(9)	1.398(6)	C(11)-C(10)	1.431(6)
Cl(3)-O(7)	1.404(6)	C(8)-C(9)	1.418(5)
Cl(7)-O(14)	1.211(10)	N(2)-C(3)	1.338(5)
Cl(7)-O(13)	1.307(9)	N(2)-C(31)	1.478(6)
Cl(7)-O(12)	1.357(11)	N(2)-C(29)	1.486(7)
Cl(7)-O(8)	1.389(8)	C(5)-C(4)	1.356(6)
O(2)-C(20)	1.232(4)	C(3)-C(2)	1.410(6)
O(1)-C(1)	1.369(4)	C(3)-C(4)	1.430(6)
O(1)-C(13)	1.371(4)	C(18)-C(17)	1.376(6)
O(3)-C(23)	1.414(6)	C(10)-C(9)	1.351(5)
N(3)-C(20)	1.330(5)	C(15)-C(16)	1.378(6)
N(3)-C(21)	1.475(5)	C(17)-C(16)	1.377(6)
O(4)-C(22)	1.434(6)	O(5)-C(24)	1.359(8)
C(13)-C(12)	1.360(5)	C(27)-C(28)	1.515(9)
C(13)-C(8)	1.414(5)	C(21)-C(23)	1.520(7)
N(1)-C(11)	1.346(5)	C(21)-C(22)	1.521(7)
N(1)-C(27)	1.461(6)	C(21)-C(24)	1.553(7)
N(1)-C(25)	1.480(6)	C(31)-C(32)	1.495(10)
C(6)-C(7)	1.403(5)	C(26)-C(25)	1.501(8)
C(6)-C(5)	1.413(5)	C(30)-C(29)	1.512(12)
C(6)-C(1)	1.415(5)		

 Table S3: Selected bond lengths [Å] and angles [°] for Zn-R1.

Bond Angle	Bond Angle [°]	Bond Angle	Bond Angle [°]
O(4)-Zn(1)-O(4)#1	180	C(18)-C(19)-C(14)	119.6(3)
O(4)-Zn(1)-O(2)#1	91.52(14)	C(18)-C(19)-C(20)	121.2(3)
O(4)#1-Zn(1)-O(2)#1	88.48(14)	C(14)-C(19)-C(20)	119.2(3)
O(4)-Zn(1)-O(2)	88.48(14)	C(15)-C(14)-C(19)	118.8(3)
O(4)#1-Zn(1)-O(2)	91.52(14)	C(15)-C(14)-C(7)	119.7(3)
O(2)#1-Zn(1)-O(2)	180.00(10)	C(19)-C(14)-C(7)	121.4(3)
O(4)-Zn(1)-O(3)	84.39(15)	C(13)-C(12)-C(11)	119.8(3)
O(4)#1-Zn(1)-O(3)	95.61(15)	C(8)-C(7)-C(6)	119.4(3)
O(2)#1-Zn(1)-O(3)	93.28(12)	C(8)-C(7)-C(14)	120.9(3)
O(2)-Zn(1)-O(3)	86.72(12)	C(6)-C(7)-C(14)	119.7(3)
O(4)-Zn(1)-O(3)#1	95.61(15)	N(1)-C(11)-C(12)	122.1(4)
O(4)#1-Zn(1)-O(3)#1	84.39(15)	N(1)-C(11)-C(10)	120.5(4)
O(2)#1-Zn(1)-O(3)#1	86.72(12)	C(12)-C(11)-C(10)	117.4(3)
O(2)-Zn(1)-O(3)#1	93.28(12)	C(7)-C(8)-C(13)	119.6(3)
O(3)-Zn(1)-O(3)#1	180	C(7)-C(8)-C(9)	124.6(3)
O(11)-Cl(3)-O(10)	107.4(5)	C(13)-C(8)-C(9)	115.7(3)
O(11)-Cl(3)-O(9)	116.9(7)	C(3)-N(2)-C(31)	122.2(4)
O(10)-Cl(3)-O(9)	106.6(5)	C(3)-N(2)-C(29)	120.2(4)
O(11)-Cl(3)-O(7)	108.1(5)	C(31)-N(2)-C(29)	117.3(4)
O(10)-Cl(3)-O(7)	112.0(6)	C(4)-C(5)-C(6)	122.0(4)
O(9)-Cl(3)-O(7)	105.9(4)	N(2)-C(3)-C(2)	122.2(4)
O(14)-Cl(7)-O(13)	103.3(8)	N(2)-C(3)-C(4)	120.5(4)
O(14)-Cl(7)-O(12)	119.2(14)	C(2)-C(3)-C(4)	117.3(4)
O(13)-Cl(7)-O(12)	102.1(11)	C(17)-C(18)-C(19)	120.3(4)
O(14)-Cl(7)-O(8)	109.8(10)	C(9)-C(10)-C(11)	121.2(4)
O(13)-Cl(7)-O(8)	123.4(10)	C(16)-C(15)-C(14)	121.3(4)
O(12)-Cl(7)-O(8)	100.0(6)	C(5)-C(4)-C(3)	121.2(4)
C(20)-O(2)-Zn(1)	134.8(2)	C(18)-C(17)-C(16)	120.2(4)
C(1)-O(1)-C(13)	120.5(3)	C(10)-C(9)-C(8)	122.2(4)
C(23)-O(3)-Zn(1)	120.3(3)	C(1)-C(2)-C(3)	120.3(4)
C(20)-N(3)-C(21)	127.6(3)	C(17)-C(16)-C(15)	119.8(4)
C(22)-O(4)-Zn(1)	122.9(3)	N(1)-C(27)-C(28)	111.8(5)
C(12)-C(13)-O(1)	115.9(3)	N(3)-C(21)-C(23)	111.1(4)
C(12)-C(13)-C(8)	123.6(3)	N(3)-C(21)-C(22)	111.6(4)
O(1)-C(13)-C(8)	120.5(3)	C(23)-C(21)-C(22)	113.6(4)

C(11)-N(1)-C(27)	122.3(4)	N(3)-C(21)-C(24)	105.8(4)
C(11)-N(1)-C(25)	121.9(4)	C(23)-C(21)-C(24)	105.7(4)
C(27)-N(1)-C(25)	115.8(4)	C(22)-C(21)-C(24)	108.5(4)
C(7)-C(6)-C(5)	124.5(3)	N(2)-C(31)-C(32)	112.1(5)
C(7)-C(6)-C(1)	119.4(3)	N(1)-C(25)-C(26)	112.8(5)
C(5)-C(6)-C(1)	116.0(3)	O(3)-C(23)-C(21)	113.7(4)
C(2)-C(1)-O(1)	116.6(3)	O(5)-C(24)-C(21)	114.9(5)
C(2)-C(1)-C(6)	123.0(3)	O(4)-C(22)-C(21)	112.5(4)
O(1)-C(1)-C(6)	120.4(3)	N(2)-C(29)-C(30)	113.3(6)
O(2)-C(20)-N(3)	124.4(4)		
O(2)-C(20)-C(19)	119.1(3)		
N(3)-C(20)-C(19)	116.5(3)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1