Electronic supplementary information (ESI)

Figure S1

Figure S1. The crystal structure of $Ba_3La(PO_4)_3$ viewing along [001] direction, and the coordination environment of M $(Ba^{2+}, La^{3+}, and Eu^{2+}).$

Luminescence center Mn ²⁺ content	Site I (Eu1)	Site II (Eu2)	Site III (Eu3)	Site IV (Eu4)
0.00	<mark>0.049</mark>	<mark>0.880</mark>	<mark>0.043</mark>	<mark>0.269</mark>
0.005	<mark>0.044</mark>	0.853	<mark>0.040</mark>	0.228
0.01	0.039	0.834	0.037	0.217
0.02	0.037	<mark>0.809</mark>	0.035	0.213
0.04	0.034	0.793	0.033	<mark>0.187</mark>
0.06	0.031	0.719	0.029	0.159
0.08	0.030	0.660	0.028	0.135
0.10	0.027	0.636	0.026	0.124

Table S1. The fluorescence lifetimes of Eu^{2+} (µs) for different sites (I, II, III, and IV) in BLaP:0.005Eu²⁺,yMn²⁺ samples.

Figure S2

Figure S2. Dependence of the energy transfer efficiency η_T on Mn²⁺ content (y) for different luminescence centers (Eu1,

Eu2, Eu3, and Eu4).

Figure S3. The integral luminescence intensity of both Eu^{2+} and Mn^{2+} for $BLaP: 0.005Eu^{2+}, 0.06Mn^{2+}$ phosphor at

different temperature.