Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

A series of selective and sensitive fluorescent sensor based on thiophen-2-

yl-benzothiazole unit for Hg²⁺

Qunbo Mei,*a Ruqiang Tian, a Yujie Shi, a Qingfang Hua, a Chen Chen, a Bihai Tong, b*

^a Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, China;

^b Institute of Molecular Engineering and Applied Chemistry, College of Metallurgy and Resources, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.

Contents:

- 1. Supplementary spectra data (Figure S1- Figure S8)
- 2. Theoretical calculations data (Table S1- Table S5)

3. GC-MS、 MALDI-TOF mass、 IR and NMR data (Figure S9- Figure S45)

Figure S1. UV-vis spectra of compounds **TBT**, **CTBT**, **DTBT**, and **NTBT** by density functional theory (DFT) in dichloromethane solution.

Table S1. The HOMO and LUMO distributions of TBT, CTBT, DTBT, and NTBT

Table S2. The optimized geometry of TBT in ground state at B3LYP/6-31G(d)

Center	Atom	Coordinates		
number	Atom	X	Y	Z
1	С	-2.87587500	1.60385400	0.00015800
2	С	-1.76276900	0.74869800	0.00000500
3	С	-1.96408000	-0.65482800	-0.00007900
4	С	-3.24510700	-1.20923300	0.00002200
5	С	-4.33504100	-0.34157400	0.00009200
6	С	-4.15077400	1.05211300	0.00015200
7	Н	-2.71858700	2.67776900	0.00014700
8	Н	-3.39160900	-2.28506100	0.00006300
9	Н	-5.34131300	-0.75083900	0.00014300
10	Н	-5.01860800	1.70552400	0.00017900
11	S	-0.40749100	-1.45985000	-0.00028000

12	Ν	-0.44546800	1.16226400	-0.00007700
13	С	0.37268700	0.15082900	-0.00004100
14	С	1.81628100	0.29883300	-0.00013800
15	С	2.51116300	1.49003100	-0.00008100
16	S	2.91940800	-1.06077400	0.00029300
17	С	3.92054800	1.31429400	-0.00016200
18	Н	2.00429300	2.44731700	-0.00024500
19	С	4.29170800	-0.00491600	0.00011700
20	Н	4.63135200	2.13329400	-0.00041100
21	Н	5.28961600	-0.42248100	0.00017600

Table S3. The optimized geometry of **CTBT** in ground state at B3LYP/6-31G(d)

Center	Atom	Coordinates		
number	Atom	X	Y	Ζ
1	С	-5.39895900	1.40241100	-1.43628800
2	С	4.62202800	0.55418100	-0.63255900
3	С	-5.26324400	-0.38199100	0.21732500
4	С	-6.65415300	-0.48185100	0.27438300
5	С	-7.40617700	0.37021100	-0.53187100
6	С	-6.78351000	1.30329800	-1.37885800
7	Н	-4.90354500	2.11726400	-2.08548600
8	Н	-7.13990700	-1.20072500	0.92713300
9	Н	-8.49042900	0.31011000	-0.50313300
10	Н	-7.39467000	1.95510200	-1.99655000
11	S	-4.04929700	-1.29589600	1.09410900
12	Ν	-3.24148800	0.54426700	-0.59188700
13	С	-2.79366000	-0.34497500	0.24472700
14	С	-1.38860600	-0.57845300	0.49205200
15	С	-0.78788900	-1.47106800	1.35385100
16	S	-0.19898400	0.38288000	-0.35952100
17	С	0.62661700	-1.37825600	1.36667600
18	Н	-1.34661000	-2.15876400	1.97986200
19	С	1.10525500	-0.41797600	0.50595500

 20	Н	1.27373800	-1.97919900	1.99487200
21	С	3.40724800	-1.04487600	-0.19875200
22	С	3.04961400	1.14550700	0.32360200
23	С	3.27053100	-2.40943600	-0.45546800
24	С	4.63622700	-0.36767100	-0.38658100
25	С	2.50305200	2.36408500	0.72909600
26	С	4.40890900	1.02514900	-0.05478700
27	С	4.39860100	-3.09931200	-0.89673400
28	Н	2.31981100	-2.91482200	-0.32223400
29	С	5.75452600	-1.08407100	-0.82760900
30	С	3.34221800	3.47717500	0.73602600
31	Н	1.46433000	2.44642900	1.03052200
32	С	5.23022800	2.15791000	-0.03772800
33	С	5.63006700	-2.44788400	-1.07825300
34	Н	4.31972900	-4.16278100	-1.10497900
35	Н	6.70600600	-0.58040700	-0.97617600
36	С	4.69085400	3.37970500	0.35532300
37	Н	2.94111500	4.43838300	1.04515300
38	Н	6.27565200	2.08311800	-0.32519000
39	Н	6.49127900	-3.01461200	-1.42029000
40	Н	5.31793900	4.26648900	0.37098000
41	Ν	2.44202100	-0.11972400	0.23916400

Table S4. The optimized geometry of **DTBT** in ground state at B3LYP/6-31G(d)

Center	ter Coordinates			
number	Atom	X	Y	Z
1	С	6.31924100	1.40212000	0.46634600
2	С	5.15830800	0.65483700	0.21193200
3	С	5.27380200	-0.62662600	-0.38469800
4	С	6.51574800	-1.16424900	-0.72621900
5	С	7.65415600	-0.40486800	-0.46460900
6	С	7.55529700	0.86674500	0.12651700
7	Н	6.22794800	2.38262600	0.92283600
8	Н	6.59627500	-2.14613000	-1.18271000
9	Н	8.63119200	-0.80384300	-0.72221900
10	Н	8.45908000	1.43777000	0.31961900

11	S	3.67535000	-1.31811800	-0.57841200
12	Ν	3.87233000	1.06666800	0.49712900
13	С	2.99507700	0.16841200	0.15244300
14	С	1.56890100	0.33778400	0.34116500
15	С	0.94993800	1.41990200	0.93309900
16	S	0.38375300	-0.83999700	-0.17611500
17	С	-0.45951200	1.30313900	0.97971600
18	Н	1.51456100	2.25642700	1.32705700
19	С	-0.94312300	0.13167600	0.43015200
20	Н	-1.10583300	2.03982800	1.44284000
21	С	-2.32590600	-0.35656000	0.33826400
22	С	-3.40876000	0.51177700	-0.04588900
23	С	-2.61315200	-1.68879500	0.63644000
24	С	-3.33375800	1.87131000	-0.45635000
25	С	-4.70332700	-0.06243100	-0.04896700
26	С	-3.92020900	-2.23281600	0.60342100
27	Н	-1.79491600	-2.33657600	0.93916500
28	С	-4.48186000	2.56415700	-0.79877900
29	Н	-2.37068100	2.36476000	-0.52366000
30	С	-5.87572300	0.64753000	-0.39457500
31	С	-4.97342900	-1.41138500	0.26951300
32	Н	-4.06720500	-3.27991600	0.85549100
33	С	-5.77088900	1.96932600	-0.76470400
34	Н	-4.39405100	3.60083200	-1.11403600
35	Н	-6.64334300	2.55620200	-1.04113200
36	С	-6.46501900	-1.66333500	0.14937800
37	С	-7.07053200	-0.28343500	-0.28087500
38	Н	-7.79372400	0.08304400	0.45780300
39	Н	-7.61188800	-0.36131700	-1.23128200
40	Н	-6.89157200	-2.01234500	1.09757300
41	Н	-6.67940900	-2.44348800	-0.59116000

Table S5. The optimized geometry of NTBT in ground state at B3LYP/6-31G(d)

number		Х	Y	Z
1	С	9.15789200	0.56046200	-0.17306000
2	С	7.87368000	-0.00714700	-0.17553300
3	С	7.72541200	-1.39285400	-0.43864800
4	С	8.82776100	-2.20930500	-0.69722500
5	С	10.09195600	-1.62453900	-0.68941400
6	С	10.25446800	-0.25217000	-0. 42942600
7	Н	9.26778600	1.62119800	0.02870300
8	Н	8.70724800	-3.26936100	-0.89827900
9	Н	10.96426000	-2.24081400	-0.88754400
10	Н	11.25242900	0.17670700	-0.42972700
11	S	6.02582300	-1.81362000	-0.37214400
12	Ν	6.70233200	0.68275000	0.06185200
13	С	5.66572200	-0.10157000	-0.00314600
14	С	4.30942900	0.36518000	0.21237100
15	С	3.93682700	1.65251000	0.54222600
16	S	2.90688300	-0.66661000	0.06858100
17	С	2.53769700	1.81079200	0.67981700
18	Н	4.66610400	2.44046300	0.68578700
19	С	1.82069000	0.65020500	0.46229400
20	Н	2.06704700	2.74212400	0.97388800
21	С	0.37584700	0.40799700	0.58165400
22	С	-0.59335000	1.30957500	0.01435600
23	С	-0.07262500	-0.71501800	1.27243700
24	С	-0.25209800	2.42528900	-0.79567600
25	С	-1.98321900	1.05237200	0.24385900
26	С	-1.43939400	-0.96789000	1.46624300
27	Н	0.65549700	-1.39253600	1.70773200
28	С	-1.22354800	3.26354500	-1.30607900
29	Н	0.78976200	2.60606000	-1.03278600
30	С	-2.96257300	1.93398200	-0.28302100
31	С	-2.38949100	-0.09043700	0.97741900
32	Н	-1.77088600	-1.83978600	2.02014800
33	С	-2.58535500	3.02803200	-1.04015200
34	Н	-0.93562800	4.10635700	-1.92754000
35	Н	-3.35858100	3.68052800	-1.43168200
36	С	-4.40837000	1.69140200	-0.04129600
37	С	-3.82623800	-0.36725100	1.22394600
38	0	-5.27853600	2.43248800	-0. 48016900
39	0	-4.20700400	-1.35626200	1.83742500
40	Ν	-4.74568300	0.56594100	0.72410200
41	С	-6.17776900	0.31600000	0.97614300
42	С	-6.83248800	-0. 52832600	-0.12241700
43	Н	-6.65974100	1.29235600	1.04614900

44	Н	-6.24260400	-0.19304100	1.93896400
45	С	-8.31642100	-0.79128500	0.16296500
46	Н	-6.72494800	-0.00717100	-1.08198200
47	Н	-6.29574700	-1.48191200	-0.20433900
48	С	-9.00400400	-1.62039000	-0.92941600
50	Н	-8.41524200	-1.30931300	1.12828200
51	Н	-8.84254800	0.16832300	0.27436500
52	Н	-8.91192800	-1.09807600	-1.89321700
53	Н	-8.47214400	-2.57589500	-1.04937200
54	С	-10.48543900	-1.89894500	-0.64452400
55	С	-11.16757700	-2.72051500	-1.74315100
56	Н	-11.01576600	-0.94420300	-0.51886200
57	Н	-10.57598300	-2.42547900	0.31624300
58	Н	-12.22208900	-2.90572500	-1.50858500
59	Н	-11.12742300	-2.20164800	-2.70890300
60	Н	-10.67893400	-3.69432600	-1.87142400

Table S6. The frontier molecular orbital energies of TBT, CTBT, DTBT, and NTBT.

Molecular	LUMO	НОМО
ТВТ	-1.73 eV	-5.86 eV
СТВТ	-1.90 eV	-5.45 eV
DTBT	-1.82 eV	-5.33 eV
NTBT	-2.66 eV	-5.90 eV

Figure S2. UV-vis spectra and emission spectra of **TBT** ($c = 2.0 \times 10^{-5}$ M) in the presence of metal ions in dichloromethane. Ag⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, Hg²⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺ (2.0 equiv) were added, respectively.

Figure S3. UV-vis spectra and emission spectra of **CTBT** ($c = 2.0 \times 10^{-5}$ M) in the presence of metal ions in dichloromethane. Ag⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, Hg²⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺ (2.0 equiv) were added, respectively.

Figure S4. UV-vis spectra and emission spectra of **DTBT** ($c = 2.0 \times 10^{-5}$ M) in the presence of metal ions in dichloromethane. Ag⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, Hg²⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺ (2.0 equiv) were added, respectively.

Figure S5. UV-vis spectra and emission spectra of **NTBT** ($c = 2.0 \times 10^{-5}$ M) in the presence of metal ions in dichloromethane. Ag⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, Hg²⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺ (2.0 equiv) were added, respectively.

Figure S6. Absorption intensity of the **TBT** at various concentration of Hg^{2+} . (The fitted line of the eight intermediate values (6 μ M -20 μ M Hg^{2+}).

Figure S7. Absorption intensity of the **CTBT** at various concentration of Hg²⁺. (The fitted line of the seven intermediate values (8 μ M -20 μ M Hg²⁺).

Figure S8. Absorption intensity of the **DTBT** at various concentration of Hg²⁺. (The fitted line of the eleven intermediate values (6 μ M -26 μ M Hg²⁺).

Figure S9. Changes in the luminescent spectra of **TBT** ($c=2\times10^{-5}$ M) in THF and the mixed solvent of THF and water (different volume ratio).

Figure S10. Changes in the luminescent spectra of **CTBT** ($c=2\times10^{-5}$ M) in THF and the mixed solvent of THF and water (different volume ratio).

Figure S11. Changes in the luminescent spectra of DTBT ($c=2\times10^{-5}$ M) in THF and the mixed solvent of THF and water (different volume ratio).

Figure S12. ¹H NMR spectrum of TBT

Figure S14. GC-MS of TBT

Figure S16. GC-MS of TBT

Figure S18. ¹³C NMR spectrum of 9-thiophen-2-yl-9H-Carbazole

Figure S20. IR spectrum of 9-thiophen-2-yl-9H-Carbazole

Figure S22. ¹³C NMR spectrum of 5-Carbazol-9-yl-thiophene-carbaldehyde

Figure S23. GC-MS of 5-Carbazol-9-yl-thiophene-carbaldehyde

Figure S24. IR spectrum of 5-Carbazol-9-yl-thiophene-carbaldehyde

Figure S26. ¹³C NMR spectrum of CTBT

Figure S28. IR spectrum of CTBT

Figure S30. ¹H NMR spectrum of 5-bromo-acenaphthene

Figure S32. GC-MS of 5-bromo-acenaphthene

Figure S33. ¹H NMR spectrum of 4, 4, 5, 5-tetramethyl-2-thiophen-2-yl-[1, 3, 2]dioxaborolane

Figure S34. ¹³C NMR spectrum of 4, 4, 5, 5-tetramethyl-2-thiophen-2-yl-[1, 3, 2]dioxaborolane

Figure S35. GC-MS of 4, 4, 5, 5-tetramethyl-2-thiophen-2-yl-[1, 3, 2]dioxaborolane

Figure S36. ¹H NMR spectrum of 2-acenaphthen-5-yl-thiophene

^{50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30} 8 (ppn)

Figure S37. ¹³C NMR spectrum of 2-acenaphthen-5-yl-thiophene

Figure S38. GC-MS of 2-acenaphthen-5-yl-thiophene

Figure S39. IR spectrum of 2-acenaphthen-5-yl-thiophene

Figure S40. ¹H NMR spectrum of 5-acenaphthen-5-yl-thiophene-2-carbaldehyde

Figure S42. GC-MS of 5-acenaphthen-5-yl-thiophene-2-carbaldehyde

Figure S44. ¹H NMR spectrum of DTBT

5 155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 $\delta_{(\rm ppm)}$

Figure S45. ¹³C NMR spectrum of DTBT

Figure S46. GC-MS of DTBT

Figure S48. GC-MS of DTBT


```
Bruker Daltonics flexAnalysis
```

printed: 2012/4/6 21:46:05

Figure S52. IR spectrum of NTBT