Electronic Supplementary Information

Synthesis of D-D-A-type small organic molecules with enlarged linker system towards organic solar cells and effect of co-adsorbents on cell performance

Priyanka P. Kumavat^a, Prashant K. Baviskar^b, Babasaheb R. Sankapal^c, Dipak S. Dalal^a*

^aSchool of Chemical Sciences, North Maharashtra University, Jalgaon - 425 001(M. S.), India

^bSchool of Physical Sciences, North Maharashtra University, Jalgaon - 425 001(M. S.), India

^cNano Material and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, 440010 (M. S.), India

CORRESPONDING AUTHOR FOOTNOTE

Dr. Dipak S. Dalal

Tel: +91- (257) 2257432

E-mail: dsdalal2007@gmail.com

Fig S1. Scheme 1. Synthetic route for (a) Compound 1 (b) Compound 2

IR, ¹H NMR, ¹³C NMR, Mass and LC-HR-MS spectra of Compound (i), 1 and compound 2

Fig S2.1. IR spectrta of Compound (i)

Fig S2.2. ¹H NMR spectra of Compound (i)

4

Fig S2.4. Mass spectra of Compound (i)

Fig S2.5. IR spectrta of Compound 1

Fig S2.6. ¹H NMR spectra of Compound 1

Fig S2.7. ¹³C NMR spectra of Compound 1

Qualitative Compound Report

Agilent Technologies

Page 1 of 1

Printed at: 4:44 PM on:7/22/2014

Fig S2.8. LC-HR-MS of Compound 1

() SHIMADZ

Fig S2.9. IR spectrta of Compound 2

Fig S2.10. ¹H NMR spectrta of Compound 2

Fig S2.11. ¹³C NMR spectrta of Compound 2

14

Qualitative Compound Report

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 4:50 PM on:7/22/2014

Estimation of the optical band gap for ${\rm Ti}O_2$

Fig S3. Plot of $(\alpha hv)^2$ vs. (hv) for the estimation of the band gap energy value

(400°C annealed TiO₂ coating)

Estimation of the optical band gap for synthesised organic compounds

Fig S4. Optical band gap for synthesised organic compounds

FE-SEM Images

Fig S5.1. FE-SEM image for TiO_2 thin film

Fig S5.2. FE-SEM image for Compound 1 without Cholic Acid coated on TiO_2 film

Fig S5.3. FE-SEM image for Compound 2 without Cholic Acid coated on TiO_2 film

Fig S5.4. FE-SEM image for Compound 1 with Cholic Acid as co-adsorbent coated on TiO₂

film

Fig S5.5. FE-SEM image for Compound 2 with Cholic Acid as co-adsorbent coated on TiO_2

film

EDAX analysis

Fig S6.1. EDAX report for TiO₂ thin film

ž

Fig S6.2. EDAX report for Compound 1 without Cholic Acid coated on TiO₂ film

Fig S6.3. EDAX report for Compound 2 without Cholic Acid coated on TiO₂ film

Fig S6.4. EDAX report for Compound 1 with Cholic Acid as co-adsorbent coated on TiO₂ film

Thickness Study of TiO₂

Fig S7. J-V Curve for TiO₂ thickness study