ELECTRONIC SUPPLEMENTARY INFORMATION

CO₂ capture in the presence of water vapour in MIL-53(Al)

Mayra Sánchez-Serratos,^{*a*} Peter A. Bayliss,^{*b*} Ricardo A. Peralta,^{*a*} Eduardo González-Zamora,^{*,c} Enrique Lima,^{*a*} and Ilich A. Ibarra^{*,a}

^a Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, México D. F., Mexico. E-mail: argel@unam.mx

^bSchool of Chemistry, University of Nottingham, University Park, NG7 2RD, UK.

^cDepartamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, México D. F., Mexico.

1. Materials and measurements

All reagents and solvents were used as received from commercial suppliers without further purification. Powder X-ray diffraction (PXRD) data were collected under ambient conditions on a Bruker AXD D8 Advance diffractometer operated at 160 W (40 kV, 40 mA) for Cu K α_1 (λ = 1.5406 Å). Thermal gravimetric analysis (TGA) was performed under N₂ at a scan rate of 2 °C/min using a TA Instruments Q500HR analyser. N₂ adsorption was carried out in a conventional volumetric technique by a Micromeritics ASAP 2020 sorptometer. The surface area was calculated using the BET method based on adsorption data in the partial pressure (p/p_0) range 0.01 to 0.04. Dynamic and isothermal experiments were performed using a humidity-controlled thermobalance (TA Instruments, model Q5000SA) at 30 and 50 °C and a relative humidity (RH) of 20 and 40%.

2. Experimental

CO₂ capture experiments

Kinetic uptake experiments were performed by using a thermobalance (Q500 HR, from TA) at different temperatures with a constant CO_2 flow (60 mL min⁻¹). Then, samples of MIL-53(Al) and MCM-41 were placed into the thermobalance and activated by heating from room temperature to 180 °C for 1h and under a flow of N₂ gas. After the activated sample was cooled down, the desired temperature was set and a constant CO_2 flow (60 mL min⁻¹) was started. With a humidity-controlled thermobalance (Q5000 SA, from TA) kinetic uptake experiments at 30 and 50 °C with a constant CO_2 flow (60 mL min⁻¹) were carried out on activated samples (180 °C for 1h and under a flow of N₂ gas) of MIL-53(Al) and only at 30 °C on activated samples (180 °C for 1h and under a flow of N₂ gas) of MCM-41.

3. TGA plot

Fig. S1: TGA analysis of calcined MIL-53(Al).

4. Powder X-ray diffraction patterns of MIL-53(Al)

Fig. S2: PXRD patters of simulated (black) and calcined (blue) MIL-53(Al).

5. Dynamic and isothermal CO2 anhydrous experiments on MCM-41

Fig. S3 Kinetic uptake experiments performed at different temperatures (30 and 50 $^{\circ}$ C) with a CO₂ flow of 60 mL/min on MCM-41.

6. PXRD of anhydrous MCM-41

Fig. S4: PXRD patters of each MCM-41 samples after the kinetic CO₂ isotherms were carried out at different temperatures.

7. PXRD of each MIL-53(Al) samples after the kinetic CO₂ isotherms.

Sample	BET area
	$(m^2 g^{-1})$
As-synthesised	1096
After 20% RH (H ₂ O) and	1088
30 °C	
After 20% RH (H ₂ O+CO ₂)	1090
and 30 °C	
After 40% RH (H ₂ O) and	1097
30 °C	
After 40% RH (H ₂ O+CO ₂)	1092
and 30 °C	
After 20% RH (H ₂ O+CO ₂)	1094
and 50 °C	

Fig. S5: (left) PXRD patters of each MIL-53(Al) samples after the kinetic CO_2 isotherms were carried out at different relative humidities and temperatures; (right) BET areas of each MIL-53(Al) samples after the kinetic CO_2 isotherms were carried out at different relative humidities and temperatures.

8. Dynamic and isothermal CO₂ experiments on MCM-41

Fig. S6: Kinetic uptake experiments carried out at 30 $^{\circ}$ C and 20% RH with CO₂+H₂O (red line) and only H₂O (blue line).

Fig. S7: Kinetic uptake experiments carried out at 30 $^{\circ}$ C and 40% RH with CO₂+H₂O (red line) and only H₂O (blue line).

9. PXRD of each MCM-41 samples after the kinetic CO₂ isotherms.

Fig. S8: PXRD patters of each MCM-41 samples after the kinetic CO₂ isotherms were carried out at different relative humidities.

10. Dynamic and isothermal CO₂ experiments on PCM-14

Fig. S9: Kinetic isotherms carried out at 30 °C and 0% RH with a CO₂ flow of 60 mL/min in PCM-14.

Fig. S10: Kinetic isotherms carried out at 30 °C and 20% RH with a CO₂ flow of 60 mL/min in PCM-14.

11. Static and isothermal adsorption experiments on MIL-53

Fig. S11: Static CO₂ isotherm carried out at 30 °C in MIL-53.

Fig. S12: Static H₂O isotherm carried out at 30 °C in MIL-53.