Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New Journal of Chemistry

Title: Low temperature operating gas sensor with high response to NO_2 based on ordered mesoporous Ni-doped In_2O_3

QiuyueYang,^a XiaobiaoCui,^a JiangyangLiu,^a Jing Zhao,^b YinglinWang^a Yuan Gao,*^a Pengsun,^a Jian Ma,*^a GeyuLu^a

a. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

b. College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

Supporting Information

Figure S1. Nitrogen adsorption–desorption isotherms and corresponding pore size distribution(inset) of Ni-doped $\rm In_2O_3$ without SBA-15

The Ni-doped In_2O_3 without SBA-15 had been synthesized in the same condition with ordered mesoporous Ni-doped In_2O_3 mentioned in the paper. The nitrogen adsorption–desorption isotherms and the corresponding pore size distribution of the Ni-doped In_2O_3 prepared without the template SBA-15 were shown in Fig.S1. The pore size distribution of Ni-doped In_2O_3 without SBA-15 was not single as that of mesoporous ordered In_2O_3 . The surface area of Ni-doped In_2O_3 without SBA-15 is 17.1 m²/g, which is much smaller than that of mesoporous Ni-doped In_2O_3 (58.5 m²/g) and mesoporous In_2O_3 (50.3 m²/g). It meant the materials synthesized by nanocasting method with SBA-15 as template had higher surface area.

Figure S2. The SEM image of mesoporous Ni-doped In₂O₃

The morphology of mesoporous Ni-doped In_2O_3 was characterized by SEM. It could be seen that mesoporous Ni-doped In_2O_3 consisted of fiber-like aggregates, which was similar to the typical morphology of SBA-15.