ESI for

New sterically encumbered arylimido hexamolybdates for organic oxidation reactions

Ritambhara Jangir, Rajendran Antony, Ramaswamy Murugavel*

Contents

1. Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ in $\mathrm{DMSO}-d_{6}(400 \mathrm{MHz})$.
2. Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in $\mathrm{DMSO}-d_{6}(400 \mathrm{MHz})$.
3. Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in Acetone- $d_{6}(400 \mathrm{MHz})$.
4. Figure S 4 . TGA cures of $\mathbf{1 - 3}\left(10^{\circ} \mathrm{C} / \mathrm{min}, \mathrm{N}_{2}\right.$ atm $)$.
5. Figure S6. . Effect of time on selectivity and conversion \% in cyclohexene oxidation catalysed by 2.
6. Figure S7. Effect of time on selectivity and conversion \% in cyclohexene oxidation catalysed by 3 .
7. Effect of time on selectivity and conversion \% in benzyl alcohol oxidation catalysed by

1.

8. Effect of time on selectivity and conversion \% in benzyl alcohol oxidation catalysed by 2.
9. Figure S9. ESI-MS spectrum of reaction mixture after benzyl alcohol oxidation catalysed by 1.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ in $\mathrm{DMSO}-d_{6}(400 \mathrm{MHz})$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in $\mathrm{DMSO}-d_{6}(400 \mathrm{MHz})$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in Acetone- $d_{6}(400 \mathrm{MHz})$.

Figure S4. TGA cures of $\mathbf{1 - 3}\left(10^{\circ} \mathrm{C} / \mathrm{min}, \mathrm{N}_{2} \mathrm{~atm}\right)$.

Figure S5. Effect of time on selectivity and conversion \% in cyclohexene oxidation catalysed by 2.

Figure S6. Effect of time on selectivity and conversion $\%$ in cyclohexene oxidation catalysed by 3.

Figure S7. Effect of time on selectivity and conversion \% in benzyl alcohol oxidation catalysed by 1 .

Figure S8. Effect of time on selectivity and conversion \% in benzyl alcohol oxidation catalysed by 2 .

Display Report

Analysis Info		Acquisition Date
Analysis Name	D:IDatalAUG15\RM-RJ-072-AGAIN .d	
Method	Tune_neg_Standard_NAICSI-2000.m	Operator
Sample Name	RM-RJ-072-AGAIN OUT	Instrument maXis impact
Comment	LRMS	

Acquisition Parameter					
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	3800 V	Set Dry Heater	$180^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$4.01 / \mathrm{min}$
Scan End	$2000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	0 nA	Set APCI Heater	$0^{\circ} \mathrm{C}$

RM-RJ-072-AGAIN .d
Bruker Compass DataAnalysis $4.1 \quad$ printed: $11 / 5 / 201511: 15: 40$ PM by: mr-rs-in Page 1 of 1

Figure S9. ESI-MS spectrum of reaction mixture after benzyl alcohol oxidation catalysed by 1. The peak centered at $\mathrm{m} / \mathrm{z} 607$ corresponds to the molecular ion of $\mathbf{1}$.

