Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary Materials

A highly selective and sensitive fluorescent turn-on Al³⁺ chemosensor in aqueous media and living cells: Experimental and theoretical studies

In Hong Hwang,^a Ye Won Choi,^a Kyung Beom Kim,^a Gyeong Jin Park,^a Jae Jun Lee,^a LeTuyen Nguyen,^b Insup Noh,^b Cheal Kim^a*

^a Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

^b Department of Chemical and Biomolecular Engineering, and Convergence Program of Biomedical Engineering and Biomaterials, Seoul National University of Science & Technology, Seoul 139-743, Republic of Korea. The method of determination of association constant (*K*). Based on the literatures,^{1,2} the association constant (*K*) of sensor 1 (L) with Co^{2+} or Cu^{2+} (M) can be expressed by the following equations, where (L) and (M) are assumed to form a complex with a complexation ratio of m:n.

$$[M]^{m} = \frac{1}{nK_{[L]}^{n-1}} \frac{1-\alpha}{\alpha^{n}}, \quad \alpha = \frac{[L]}{[L]_{T}}$$

 α is defined as the ratio between the free ligand concentration [L] and the initial concentration of ligand [L]_T.

References

- [1] G. Grynkiewicz, M. Poenie, R. Y. Tsien, J. Biol. Chem., 1985, 260, 3440.
- [2] C.-Y. Li, X.-B. Zhang, Y.-Y. Dong, Q.-J. Ma, Z.-X. Han, Y. Zhao, G.-L. Shen, R.-Q.
 Yu, *Anal. Chim. Acta*, 2008, 616, 214.

Sensor	Analyte	Solvent	Method	Detection limit (Zn^{2+})	Reference
	Al ³⁺ and Zn ²⁺	МеОН	Fluorescnce	1.2 x 10 ⁸	25
	Al ³⁺ and Zn ²⁺	Bis-tris buffer	Fluorescnce	1.0 x 10 ⁷	26
C C C C C C C C C C C C C C C C C C C	Al ³⁺	EtOH:H ₂ O = 1 : 4 (v/v)	Fluorescnce	7.1 x 10 ⁶	27
OH N-	Al ³⁺	EtOH:H ₂ O = 95 : 5 (v/v)	Fluorescnce	3.1 x 10 ⁶	28
	Al ³⁺ and Zn ²⁺	$CH_3CN:H_2O = 9:1 (v/v)$	Fluoresence/colorimietry	9.0 x 10 ⁴	30
OH N	Al ³⁺	EtOH:H ₂ O = 1 : 9 (v/v)	Fluorescnce	4.9 x 10 ⁴	80
	Al^{3+} and Zn^{2+}	Bis-tris buffer	Fluoresence/colorimietry	4.0 x 10 ³	81
OH OH	Al ³⁺	DMSO	Fluorescnce	5.3 x 10 ⁴	82
HO O OH	Al ³⁺	Bis-tris buffer:MeOH = 1:1 (v/v)	Fluorescnce	3.1 x 10 ⁸	This work

Table S1. Examples for the detection of Al^{3+} by organic chemosensors.

Fig. S1. Fluorescence spectra of sensor **1** (10 μ M) upon addition of metal nitrate salts (20 equiv) of Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, Ga³⁺, In³⁺, Pb²⁺ and Cr³⁺ with an excitation of 410 nm in bis-tris buffer (10 mM, pH 7.0).

Fig. S2. Negative-ion electrospray ionization mass spectrum of 1 upon addition of 0.5 equiv of Al^{3+} .

Fig. S3. Association constant (K_a) of **1** (10 µM) for Al³⁺ through fluorescent intensity, assuming 2:1 stoichiometry for association between **1** and Al³⁺ (λ_{ex} =410 nm and λ_{em} =460 nm).

Fig. S4. Detection limit (DL) of 1 (10 μ M) for Al³⁺ through fluorescent intensity (λ_{ex} =410 nm and λ_{em} =460 nm).

(a)

(b)

Fig. S5. Images of Live/Dead assays using fibroblasts with (a) **1** and (b) **1**-Al³⁺ complex, respectively. The cells were incubated with **1** (10 μ M) or **1**-Al³⁺ complex (**1**: 10 μ M, Al(NO₃)₃: 150 μ M) for 1 h (A, D, G and J), 12 h (B, E, H and K) and 24 h (C, F, I and

L). Green color represents cells alive and red color for dead cells.

Fig. S6. Energy-minimized structures of (a) 1 and (b) Al³⁺-2·1 from B3LYP level.

Excited State 1WavelengthPercent (%)Oscillator strength $H \rightarrow L$ 394.61 nm97%0.8349

(a)

Fig. S7. (a) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (b) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1.

(a)			
Excited State 1	Wavelength	Percent (%)	Oscillator strength
$H \to L$	499.43 nm	99%	0.0045
Excited State 5	Wavelength	Percent (%)	Oscillator strength
$H \rightarrow L+1$	367.42 nm	83%	0.9022
$H-1 \rightarrow L+1$		12%	

	Molecular orbital (Al ³⁺ -2•1 complex)	
LUMO + 1	LUMO	НОМО
(-1.817 eV)	(-2.429 eV)	(-5.394 eV)
HOMO - 1		
(-5.475 eV)		

Fig. S8. (a) The major electronic transition energies and molecular orbital contributions for $Al^{3+}-2\cdot 1$ (H = HOMO and L = LUMO). (b) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of $Al^{3+}-2\cdot 1$.

(b)
