Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

New Journal of Chemistry

Supporting information for

Highly Selective Colorimetric and Fluorescent BODIPY Dyes for

Sensing of Cysteine and/or Homocysteine

Qinghua Wu, Jinyuan Zhou, Yangchun Wu, Changjiang Yu, Erhong Hao^{*} and

Lijuan Jiao *

Laboratory of Functionalized Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China.

*To whom correspondence should be addressed. E-mail: <u>haoehong@ahnu.edu.cn</u>, jiao421@ ahnu.edu.cn

Contents:

1. Experimental Section	S2
2. UV-vis and fluorescence spectroscopes	S3
3. Copies of ¹ H NMR, ¹³ C NMR and High resolution mass spectra for	all new
compounds	S8
4. DFT calculation	S16

1. Experimental Section:

Relative fluorescence quantum efficiencies of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various solvents with fluorescein ($\lambda_{ex} = 480$ nm) in 0.1 M NaOH aqueous solution ($\Phi = 0.90$) as the standard or Cresy Violet perchlorate ($\lambda_{ex} = 540$ nm) in methanol as the standard ($\Phi = 0.54$). Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Dilute solutions (0.01<A<0.05) were used to minimize the reabsorption effects. Quantum yields were determined using the following equation:

 $\Phi_{\rm X} = \Phi_{\rm S} \left(I_{\rm X}/I_{\rm S} \right) \left(A_{\rm S}/A_{\rm X} \right) \left(n_{\rm X}/n_{\rm S} \right)^2$

Where Φ_S stands for the reported quantum yield of the standard, I stands for the integrated emission spectra, A stands for the absorbance at the excitation wavelength and n stands for the refractive index of the solvent being used.

2. UV-vis and fluorescence spectroscopes

BODIPY	λ_{abs} (nm),	$\lambda_{em}(nm)$	Φ^{a}	Stokes-shift (cm ⁻¹)
1	504	530	0.75	973
2	508	531	0.95	852
3	495	555	0.10	2184
4	516	532	0.91	583

Table S1. Photophysical properties of BODIPYs 1-4 in methanol at room temperature.

^athe fluorescence quantum yields Φ were calculated using fluorescein ($\lambda_{ex} = 480$ nm) in 0.1 M NaOH aqueous solution ($\Phi = 0.90$) as the standard.

Table S2. Photophysical properties of BODIPYs 1 and 3 with or without y	various	amino
acids in MeOH/HEPES (45 mM, pH = 7.2 , v/v = $1/1$) solution.		

BODIPY	λ_{abs} (nm),	$\lambda_{em}(nm)$	Φ^{a}	Stokes-shift (nm)
1	501	530	0.61	19
1-Cys ^b	516	528	0.08	12
1-Hcy ^b	514	527	0.16	13
1-other all analytes ^c	516	528	0.08	12
3	491	545	0.09	54
3-Cys ^d	516	547	0.26	31
3-other all analytes ^e	491	545	0.09	54

^athe fluorescence quantum yields Φ were calculated using fluorescein (λ_{ex} = 480 nm) in 0.1 M NaOH aqueous solution (Φ = 0.90) as the standard and were recorded 1h after adding amino acids; ^b 200 equiv Cys or Hcy was added; ^cOther all analytes (400 equiv, respectively): Ala, Arg, Asp, Glu, Gly, His, Leu, Lys, Met, Pro, Ser, Thr, Val, Iso, and GHS; ^d400 equiv Cys was added; ^eOther all analytes (400 equiv, respectively): Hcy, Ala, Arg, Asp, Glu, Gly, His, Leu, Lys, Met, Pro, Ser, Thr, Val, Iso, and GHS

Figure S1. Absorption (a, 1×10^{-5} M) and fluorescence (b, 1×10^{-6} M, $\lambda_{ex} = 480$ nm) spectra of BODIPY **1** in a MeOH/HEPES (45 mM, pH 7.2, 1:1, v/v) solution in the absence, or presence of 200 equiv of Cys or/and 400 equiv of other selected analytes (Ala, Arg, Asp, Glu, Gly, His, Leu, Lys, Met, Pro, Ser, Thr, Val, Iso, and GHS).

Figure S2. Absorption (a, 1×10^{-5} M) and emission (b, 1×10^{-6} M, $\lambda_{ex} = 480$ nm) spectra of BODIPY **3** with or without 200 equiv of Cys or Hcy in a MeOH/HEPES (45 mm, pH 7.2, 1:1, v/v) solution.

Figure S3. Absorption (a, 1×10^{-5} M) and fluorescence (b, 1×10^{-6} M, , $\lambda_{ex} = 480$ nm) spectra of BODIPY **3** in a MeOH/HEPES (45 mM, pH 7.2, 1:1, v/v) solution in the absence, or presence of 200 equiv of Cys or/and 400 equiv of other selected analytes containing 200 equiv of Hcy.

Figure S4. Fluorescence spectra of BODIPY **3** $(1 \times 10^{-6} \text{ M})$ in a MeOH/HEPES (45 mM, pH 7.2, 1:1, v/v) solution in the absence, or presence of 200 equiv of Hcy or/and 400 equiv of other selected analytes.

3. Copies of ¹H NMR, ¹³C NMR and High resolution mass spectra for all new compounds

Figure S5. ¹H-NMR spectra of BODIPY **1** (3 mM, CD₃CN:D₂O=7:3) in the absence (top), or presence of 10 equiv of Cys (bottom, spectrum was recorded after addition of Cys for 1h).

Figure S6. ¹H-NMR spectra of BODIPY **3** (3mM, CD₃CN:D₂O=7:3) in the absence (top), or presence of 10 equiv of Cys (bottom, spectrum was recorded after addition of Cys for 1h).

5a Calcd. **C19H15BCl2F2N3O2S** [M+H]⁺ 468.0323 Found: 468.0318

Calcd. **C20H17BCl2F2N3O2S** [M+H]⁺ 482.0480 Found: 482.0479

6 Calcd. **C21H29BF2N3O2S** [M+H]⁺ 436.2042 Found: 436.2036

¹³C NMR of BODIPY **1** in CDCl₃

¹H NMR of BODIPY **3** in CDCl₃

S14

^{13}C NMR of BODIPY **3** in CDCl₃

and a

4. DFT calculation

The ground state geometry was optimized by using DFT method at b3lyp/6-31G (d) level. The same method was used for vibrational analysis to verify that the optimized structures correspond to local minima on the energy surface. TD-DFT computations were used to obtain the vertical excitation energies and oscillator strengths at the optimized ground state equilibrium geometries under the b3lyp/6-311G (2d,p) theoretical level. The TDDFT of all the molecules in Methanol were using the Self-Consistent Reaction Field (SCRF) method and th Polarizable Continuum Model (PCM). All of the calculations were carried out by the methods implemented in Gaussian 09 package.

Figure S7. Frontier molecular orbitals (MO) of BODIPY **1** calculated with Timedependent density functional theory (TDDFT) at the b3lyp/6-311G (2d,p) level (number of states: 20) using Gaussian 09.

1:	Singlet-A	2.9435 eV	421.21 nm	f = 0.5492	<s**2>=0.000</s**2>
-0.1	17021				
0.6	68566				
-0.1	10075				
	1: -0. 0.0	1: Singlet-A -0.17021 0.68566 -0.10075	1: Singlet-A 2.9435 eV -0.17021 0.68566 -0.10075	1: Singlet-A 2.9435 eV 421.21 nm -0.17021 0.68566 -0.10075	1: Singlet-A 2.9435 eV 421.21 nm f = 0.5492 -0.17021 0.68566 -0.10075

Figure S8. Frontier molecular orbitals (MO) of BODIPY **5a** calculated with Timedependent density functional theory (TDDFT) at the b3lyp/6-311G (2d,p) level (number of states: 20) using Gaussian 09.

Excited State	1:	Singlet-A	2.6681 eV	464.70 nm	f = 0.2787	<s**2>=0.000</s**2>
118 ->120		0.38259				
119 ->120		0.59010				
Excited State	2:	Singlet-A	2.9263 eV	423.69 nm	f = 0.2783	<s**2>=0.000</s**2>
115 ->120		0.12774				
117 ->120		0.16171				
118 ->120		0.57815				
119 ->120		-0.35376				

Figure S9. Frontier molecular orbitals (MO) of BODIPY **5b** calculated with Timedependent density functional theory (TDDFT) at the b3lyp/6-311G (2d,p) level (number of states: 20) using Gaussian 09.

Excited State	1:	Singlet-A	2.6914 eV	460.66 nm	f = 0.0461	<s**2>=0.000</s**2>
122 ->124		0.66859				
123 ->124		0.22784				
Excited State	2:	Singlet-A	2.8103 eV	441.18 nm	f = 0.4114	<s**2>=0.000</s**2>
119 ->124		0.13814				
121 ->124		-0.27608				
122 ->124		-0.21418				
123 ->124		0.60134				

Figure S10. Frontier molecular orbitals (MO) of BODIPY **3** calculated with Timedependent density functional theory (TDDFT) at the b3lyp/6-311G (2d,p) level (number of states: 20) using Gaussian 09.

Excited State	1: Singlet-A	2.7186 eV 456.06 nm f = 0.5198 $<$ S**2>=0.000
87 -> 89	-0.19827	
88 -> 89	0.67968	
Excited State	2: Singlet-A	3.0999 eV 399.96 nm f = 0.2050 <s**2>=0.000</s**2>
85 -> 89	0.13580	
87 -> 89	0.66059	
88 -> 89	0.20155	

Figure S11. Frontier molecular orbitals (MO) of BODIPY **6** calculated with Timedependent density functional theory (TDDFT) at the b3lyp/6-311G (2d,p) level (number of states: 20) using Gaussian 09.

Excited State	1:	Singlet-A	2.7295 eV	454.23 nm	f = 0.4993	<s**2>=0.000</s**2>
113 ->116		-0.13637				
114 ->116		-0.15397				
115 ->116		0.67799				

Figure S12. DFT calculated absorption spectra of 1, 3, 5a, 5b and 6 in Methanol.

DFT optimized coordinates for BODIPY 1, 3, 5a, 5b and 6.

Compound 1

В	2.46534800	1.45569400	0.08911300
С	0.97526900	3.56055500	-0.20146200
С	-0.39393500	3.91611900	-0.25287300
С	-1.11378700	2.73739000	-0.16576300
С	-0.16832200	1.67722300	-0.06594000
С	-0.34641000	0.29631900	-0.00155900
С	0.75895300	-0.56999900	0.02171300
С	0.82992500	-1.97868400	0.01728700
С	2.18512100	-2.32091900	-0.01069400
С	2.90749200	-1.09881700	-0.01874900
F	2.99717800	1.72432100	1.33251000

F	3.33337300	1.77521200	-0.93074200
Ν	1.11099500	2.23564200	-0.08962500
Ν	2.06522900	-0.06667300	0.00236400
С	-1.72721000	-0.27460300	0.01817100
С	-2.40325900	-0.51437000	1.22757700
С	-2.40778100	-0.59894700	-1.16865200
С	-3.68983300	-1.05015100	1.25947200
С	-3.69453100	-1.13531100	-1.15761200
С	-4.33022100	-1.35858000	0.06155100
Н	-4.17501600	-1.21959000	2.21405700
Н	-4.18347900	-1.37179900	-2.09587800
Н	-5.33244100	-1.77610300	0.07816000
Н	-2.18808500	2.61599500	-0.18044600
Н	-0.78148900	4.92088800	-0.34770300
Н	1.84748700	4.19992800	-0.23870900
Н	3.97932200	-0.95651200	-0.03585000
Н	-0.01479900	-2.65459000	0.02242900
С	2.77211700	-3.65952600	-0.03516700
Н	2.03500100	-4.49210700	-0.02115700
0	3.96956400	-3.88372200	-0.06815900
Cl	-1.63513000	-0.33048300	-2.71978800
Cl	-1.62368100	-0.13537500	2.75131200

Compound 3

В	0.06083400	-1.40626800	0.16520900
С	2.58788300	-1.02500100	0.23831900

С	3.52940300	0.04452400	0.26723100
С	2.80750200	1.22376400	0.22207000
С	1.41417400	0.85815400	0.17961300
С	2.85503300	-2.49231800	0.24566000
С	5.01926800	-0.13406400	0.27586200
С	5.58294600	-0.38508500	-1.12760000
С	3.41819300	2.59186300	0.15870300
С	0.24694600	1.60686400	0.11191900
С	-1.01462200	0.96770900	-0.04756000
С	-2.32218400	1.50558300	-0.23515600
С	-3.19206600	0.41908300	-0.35807700
С	-2.40247200	-0.74053300	-0.23038800
С	0.29285900	3.10556200	0.20761000
С	-2.74390700	2.94289600	-0.31908300
С	-4.68048500	0.44004500	-0.55089000
С	-5.06278790	0.45493681	-2.03463930
С	-2.83895200	-2.14714700	-0.25835400
F	-0.09244300	-2.05923100	1.37274200
F	0.13356700	-2.31019700	-0.88031400
Ν	1.35468000	-0.53609200	0.18086400
Ν	-1.10578700	-0.40446500	-0.06429000
Н	2.18692400	-2.99309200	0.95125600
Н	3.89256200	-2.69670300	0.51620200
Н	2.65428500	-2.91382900	-0.74426000
Н	5.49704800	0.74711000	0.71602800
Н	5.28230700	-0.97287500	0.93076600

Н	5.13743000	-1.28226700	-1.56953900
Н	6.66794600	-0.52064100	-1.10005600
Н	5.35636300	0.45637300	-1.78971900
Н	4.49233800	2.51429300	-0.02384800
Н	3.28419400	3.14830300	1.09333400
Н	2.98985300	3.19029900	-0.65028500
Н	1.20951500	3.45079500	0.67787400
Н	-0.54517700	3.47282900	0.80022100
Н	0.22000700	3.56344000	-0.78632200
Н	-3.78013800	3.00788700	-0.65725500
Н	-2.13219000	3.51840800	-1.01950000
Н	-2.69321100	3.44422500	0.65442000
Н	-5.12980348	-0.42952729	-0.05896530
Н	-5.09149450	1.33096041	-0.07001547
Н	-4.66304321	1.35424286	-2.51050381
Н	-6.14973860	0.45633363	-2.15769631
Н	-4.65749823	-0.42112408	-2.55153171
Н	-2.03860200	-2.90542800	-0.26207100
0	-4.01103700	-2.46377600	-0.28204300
Compound	5a		
В	0.98341800	2.91751600	-0.24859200
С	3.54915700	3.24062000	-0.01003100
С	4.72597600	2.46567400	0.06673700
С	4.32851700	1.13587700	0.05375800
С	2.91116600	1.12622100	-0.02798700

1.99747400 0.06484900 -0.02996000

С

С	0.62124700	0.30506300	-0.05052200
С	-0.48497700	-0.58404200	-0.00769000
С	-1.63784600	0.18985200	-0.00752100
С	-1.20906100	1.54205900	-0.05358000
F	0.80414600	3.43226400	-1.51847500
F	0.64835800	3.83165700	0.72823800
Ν	2.47010200	2.44737400	-0.06732700
Ν	0.12382400	1.60925700	-0.08407400
С	2.50028200	-1.34155300	0.01391100
С	2.73039000	-2.00525200	1.23202700
С	2.76631700	-2.06339000	-1.16295100
С	3.20172800	-3.31644000	1.28172600
С	3.23787100	-3.37500600	-1.13511600
С	3.45392000	-3.99635000	0.09260400
Н	3.36512600	-3.78970600	2.24333800
Н	3.43001100	-3.89418400	-2.06727500
Н	3.82085300	-5.01793500	0.12284000
Н	4.95775800	0.25807100	0.10670600
Н	5.73403700	2.85161900	0.12882900
Н	3.43896400	4.31678300	-0.02687400
Н	-1.81674500	2.43553500	-0.07717000
Н	-0.42196500	-1.66364200	0.02575200
С	-3.05392600	-0.28101900	0.04164800
Н	-3.09439700	-1.34855200	-0.20653900
Ν	-3.92205300	0.53526400	-0.82000300
Н	-3.79869000	0.23721900	-1.78721000

S	-3.82336900	-0.11768300	1.75050300
С	-5.31298600	0.41023600	-0.41913000
Н	-5.91200500	1.16742800	-0.94485300
С	-5.33499100	0.70011500	1.08869200
Н	-5.28210000	1.77700900	1.26229500
Н	-6.22367600	0.29497000	1.57408400
С	-5.92224800	-0.95109200	-0.78469300
0	-5.38975800	-1.77324800	-1.49739500
0	-7.16055800	-1.11573000	-0.26688400
Н	-7.47575200	-1.98780900	-0.57274500
Cl	2.50458600	-1.31114400	-2.72543400
Cl	2.42213200	-1.17984000	2.74828200

Compound **5b**

В	1.21206000	2.92873100	-0.37048300
С	3.79503500	3.15609800	-0.21244300
С	4.94261800	2.33686500	-0.13177100
С	4.49239300	1.02632900	-0.07123600
С	3.07297600	1.07167600	-0.11305400
С	2.11840100	0.05208700	-0.03391100
С	0.75169000	0.35057800	-0.02015500
С	-0.38450500	-0.48847500	0.11190500
С	-1.50516800	0.33286500	0.11713900
С	-1.02620300	1.66195700	-0.01109800
F	1.01618300	3.36948400	-1.66567100
F	0.94784000	3.91548900	0.55507200

Ν	2.68454500	2.40730500	-0.20284300
Ν	0.30751900	1.67070100	-0.09928500
С	2.56372400	-1.37076700	0.06576900
С	2.79899500	-1.98422600	1.30903300
С	2.76738100	-2.15857400	-1.08068400
С	3.21485200	-3.31116400	1.41080600
С	3.18359600	-3.48664400	-1.00060200
С	3.40576800	-4.05746100	0.25040600
Н	3.38411700	-3.74466100	2.39001700
Н	3.32906300	-4.05752500	-1.91075100
Н	3.73000500	-5.09139400	0.32142200
Н	5.08699500	0.12653800	0.00679300
Н	5.96653100	2.68367800	-0.11482400
Н	3.72786800	4.23406600	-0.27642900
Н	-1.59817900	2.57864200	-0.04596600
Н	-0.36354400	-1.56611300	0.20334100
С	-2.94134900	-0.06406700	0.25803900
Н	-3.03181800	-1.15062000	0.09789400
Ν	-3.76537100	0.71395000	-0.66865000
Н	-3.36470500	0.62463700	-1.60077100
S	-3.46824500	0.25133700	2.01084100
С	-5.18426200	0.36093500	-0.70880100
С	-5.24558800	-0.16515000	1.79294300
Н	-5.35630700	-1.24460000	1.64088100
Н	-5.73053600	0.08590600	2.74098500
С	-5.87808800	0.61384900	0.63894700

Н	-6.93092800	0.32815200	0.54490100
Н	-5.82590700	1.68670000	0.84742100
Н	-5.64515500	1.02828300	-1.45137400
С	-5.49010900	-1.05734600	-1.22931400
0	-6.45101900	-1.73088600	-0.93124800
0	-4.56803000	-1.47061500	-2.13698000
Н	-4.86513400	-2.34773300	-2.44565100
Cl	2.56974600	-1.07364000	2.78954500
Cl	2.49470500	-1.47057300	-2.67094200

Compound 6

В	-0.40162019	0.19201403	-0.11235067
С	-2.68704200	-0.82386889	-0.92770282
С	-3.97473529	-0.31783553	-1.22413159
С	-3.94481286	1.08793766	-1.13026172
С	-2.63587596	1.44440704	-0.81768369
С	-2.27576555	-2.30715627	-0.94050908
С	-5.20609211	-1.16753269	-1.58971704
С	-5.96277552	-1.55178111	-0.30519735
С	-5.13016071	2.04828797	-1.34422245
С	-2.06645785	2.72895369	-0.72241413
С	-0.66439962	2.79071528	-0.60086047
С	0.17449478	3.89976510	-0.68252256
С	1.49862721	3.41937729	-0.60645887
С	1.46559700	2.01242101	-0.44962970
С	-2.92959516	4.00307273	-0.78576028

С	-0.26123513	5.36919355	-0.83957102
С	2.77270730	4.28312505	-0.68162522
С	3.17733516	4.72777508	0.73645287
F	0.38290697	-0.84406092	-0.77672502
F	-0.39830208	-0.05481027	1.32710376
Ν	-1.89028075	0.20704228	-0.62256098
Ν	0.18579392	1.62586663	-0.38663314
Н	-1.91971666	-2.57009171	-1.91462446
Н	-3.12199902	-2.91443568	-0.69460330
Н	-1.50028950	-2.46840634	-0.22151725
Н	-5.85224963	-0.60401420	-2.23019933
Н	-4.88870427	-2.05539445	-2.09535474
Н	-5.31543145	-2.11473628	0.33418076
Н	-6.81745422	-2.14382274	-0.55806776
Н	-6.28084779	-0.66449623	0.20092736
Н	-5.81830454	1.61694663	-2.04094199
Н	-4.76980918	2.97943693	-1.72917901
Н	-5.62596523	2.21626201	-0.41091464
Н	-3.89694654	3.79955179	-0.37674116
Н	-3.03143588	4.31492029	-1.80450251
Н	-2.45944123	4.78059756	-0.22044073
Н	0.48927722	5.90815850	-1.37936244
Н	-0.38987279	5.80885004	0.12738602
Н	-1.18603044	5.41130465	-1.37638639
Н	3.56672636	3.71158726	-1.11557514
Н	2.58293906	5.14593571	-1.28592768

Н	2.38300169	5.29639793	1.17282577
Н	4.05965754	5.33076668	0.68236323
Н	3.37139544	3.86530431	1.33951457
С	2.69004986	1.08210904	-0.35558096
Н	2.97081288	0.77463463	-1.34094405
Ν	3.88098740	1.72991695	0.28307230
Н	4.71936424	1.28441671	-0.03161648
S	2.25181400	-0.27690803	0.71778068
С	3.78814349	1.45379984	1.72349095
Н	2.92241404	1.91524336	2.15205456
С	3.66283202	-0.08314856	1.73324290
Н	3.53142960	-0.49918720	2.71049378
Н	4.52876943	-0.53414302	1.29392061
С	5.02576980	1.94620776	2.49568171
0	4.87249915	2.52239905	3.79575900
Н	4.92898226	1.83155223	4.46040000
0	6.17130240	1.84131901	1.98389238