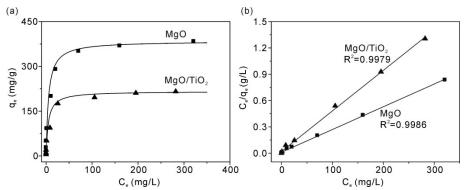
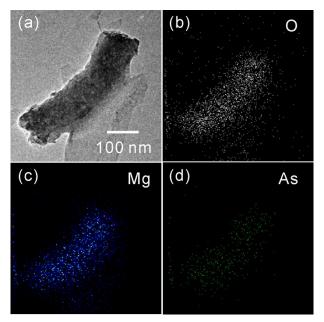
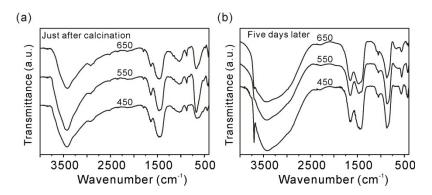
Supporting information for


Comparative study on arsenate removal mechanism of MgO and MgO/TiO₂ composites: FTIR and XPS analysis

Pei-Yun Wu^a, Yin-Ping Jiang^a, Qun-Ying Zhang^a, Yong Jia*a,


Dai-Yin Peng^a, Wei Xu*b

^aDepartment of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR
China


^bKey Lab of Material Physics, Institute of Solid State Physics, Hefei 230031, PR
China

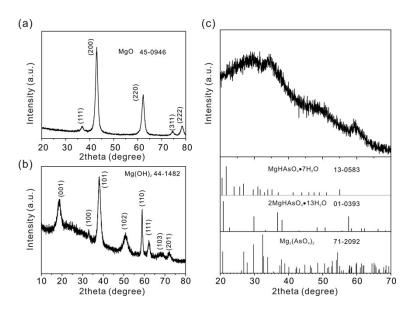

Fig. S1 Adsorption isotherms (a) and linearized Langmuir isotherms (b) obtained from As(V) adsorption onto the MgO nanowires and MgO/TiO₂ composites.

Fig. S2 TEM image (a) and elemental mapping images (b–d) of the MgO nanowires after As(V) adsorption.

Fig. S3 FTIR spectra of the MgO nanowires just after calcination at different temperature (a) and after stored five days later (b).

Fig. S4 XRD patterns of the MgO nanowires before (a) and after after immersing in water for 24 hours (b), and MgO nanowires after As (V) adsorption (c) with a initial As(V) concentration of 500 mg L⁻¹.

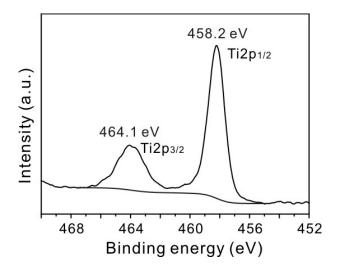


Fig. S5 XPS Ti2p spectrum of MgO/TiO_2 composites after As(V) adsorption.