Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information

Facile synthesis of Sn/MoS₂/C composite as anode materials for lithium-ion batteries with outstanding performance

Hongqiang Wang,^{ab} Qichang Pan,^a Jing Chen,^a Yahui Zan,^a Youguo Huang,^{*a} Guanhua Yang,^a Zhixiong Yan,^a and Qingyu Li^{*a}

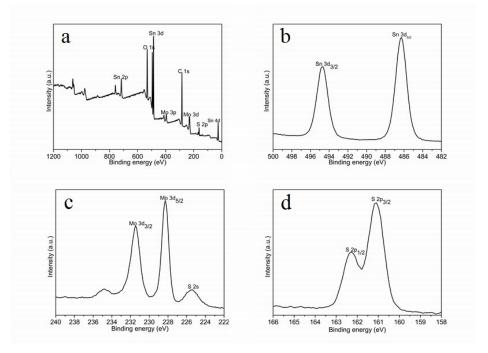


Fig. S1 (a) The survey XPS spectrum of $Sn/MoS_2/C$ composites (b), (c) and (d)

The high-resolution XPS of Sn 3d, Mo3d and S2p, respectively.

	С-К	Sn-K
<u>.20 um</u>		
О-К	S-K	Mo-K

Fig. S2 SEM and EDS mapping images of $Sn/MoS_2/C$ composite.

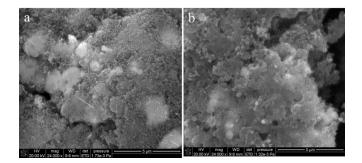


Fig. S3 SEM images of Sn/MoS2/C electrode (a) before cycle and (b) after 50 cycles .