Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information

Enhanced Mechanical Stability and Sensitive Swelling Performance

of Chitosan/yeast Hybrid Hydrogel Beads

Diejing Feng^a, Bo Bai^{*, b}, Honglun Wang^b, Yourui Suo^b

^a College of Environmental Science and Engineering, Chang'an University, Xi'an, 710054,

P.R. China; ^bKey Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau

Biology, Chinese Academy of Sciences, Xining, 810001, P.R. China

Corresponding Author: Bo Bai

Email: baibochina@163.com

Fax: +86 298 233 9961

Tel: +86 298 233 0952

The time-dependent swelling behaviours of chitosan/yeast hybrid hydrogel beads with 40 wt% yeast content were further investigated by a sequential pH variation (3~12) to discuss the mechanism. The experimental data were fitted by pseudo-first-order and pseudo-second-order kinetic models, and the results are exhibited in Figure S1 and Table S1.

Figure S1. (a) Swelling behaviors of chitosan/yeast hybrid hydrogel beads with 40 wt% yeast contents in pH 3-12 solutions, (b) pseudo-first-order kinetic model, (c) pseudo-second-order kinetic model.

As can be seen, the time-dependent swelling behaviour of chitosan/yeast hybrid hydrogel beads with 40 wt% yeast content observed in pH 3-12 solutions is similar to that in distilled water presented in Figure 4. Specifically, a steep increase of S_e was observed in the first 30 min, and then followed a gentle stage until reached an equilibrium state. In comparison, the values of the correlation coefficient (R^2) of pseudo-second-order kinetic model are much closer to 1.0, and the values of chi square or the residual sum of squares (χ^2) are much closer to 0 than pseudo-first-order kinetic model. It seemed that the swelling process of chitosan/yeast hybrid hydrogel beads obeyed pseudo-second-order kinetic model better than pseudo-first-order kinetic model. Furthermore, the swelling kinetics is dependent on the pH values of swelling medium. With altering the pH values of swelling medium, the S_e values obtained in the range of 6~7 were higher than any other pH values. This was due to the quaternisation of $-NH_2$ groups derived from chitosan after the external pH value exceeding its pK_a (approximately 6.3), and thus the electronic repulsion between $-NH_3^+$ groups contributed the network of chitosan/yeast hybrid hydrogel beads to relaxing more.

nydroger beads (40 wt/0) in various pri media.										
pН	S _{e,exp} (g/g)	Pseudo-first-order kinetic model					Pseudo-second-order kinetic model			
		$S_{ m e,cal} \ (m g/ m g)$	$\frac{K_1}{(\min^{-1})}$	R^2	χ^2	_	$S_{ m e,cal} \ (m g/ m g)$	$\begin{array}{c} K_2\\ (g/g \ \min) \end{array}$	R^2	χ^2
3	11.2	13.5887	0.0951	0.9912	0.1117		13.7438	0.0061	0.9901	0.0739
4	12.2	13.7786	0.0937	0.9913	0.0575		14.8721	0.0058	0.9910	0.0572
5	18.2	22.1746	0.1117	0.9814	0.1764		21.2089	0.0056	0.9929	0.0223
6	20.6	22.5440	0.1148	0.9953	0.0467		23.0044	0.0073	0.9964	0.0097
7	20.3	23.5162	0.1128	0.9830	0.1646		23.0468	0.0063	0.9959	0.0110
8	19.9	22.5860	0.1041	0.9930	0.1062		22.7531	0.0058	0.9964	0.0098
9	18.9	21.4085	0.1034	0.9935	0.0982		21.7202	0.0059	0.9957	0.0129
10	17.7	20.3455	0.1021	0.9912	0.0692		20.8768	0.0052	0.9924	0.0247
11	16.3	19.7440	0.0986	0.9802	0.2742		19.3949	0.0051	0.9939	0.0226
12	14.6	17.6621	0.0960	0.9771	0.3014		17.4703	0.0054	0.9946	0.0247

Table S1. Kinetic parameters for the water absorbency of chitosan/yeast hybridhydrogel beads (40 wt%) in various pH media.