Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

pH dependent synthesis of Zn(II) and Cd(II) coordination polymers with dicarboxyl-functionalized arylhydrazone of barbituric acid: Photoluminescence properties and catalysts for Knoevenagel condensation

Anirban Karmakar,^{a,*} Anup Paul,^a Kamran T. Mahmudov,^{a,b} M. Fátima C. Guedes da Silva^{a,*} and Armando J. L. Pombeiro^{a,*}

 ^a Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049– 001, Lisbon, Portugal, E-mail: <u>anirbanchem@gmail.com</u>; <u>fatima.guedes@tecnico.ulisboa.pt</u>; <u>pombeiro@tecnico.ulisboa.pt</u>

^b Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.

1. X-ray analysis

Table S1. Crystal data and structure refinement details for compounds 1-4.

Identification name	1	2	3	4
Formulae	$C_{12}H_{10}N_4O_9Zn$	$C_{12}H_{10}CdN_4O_9$	$C_{12}H_{18}N_4O_{13}Zn$	$C_{12}H_{20}CdN_4O_{14}$
Mol. wt.	419.61	466.64	491.67	556.72
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	P-1	P-1	P2 ₁ /c	C2/c
Temperature /K	296	296	296	296
Wavelength /Å	0.71073	0.71073	0.71073	0.71073
a /Å	7.7271(7)	7.8701(5)	7.5088(5)	22.127(4)
b/Å	9.6737(8)	10.0231(6)	13.6816(9)	15.583(4)
c /Å	10.9425(10)	10.5151(7)	18.8063(12)	14.931(3)
α/°	69.740(3)	107.894(2)	90	90
β/°	87.236(2)	91.326(3)	96.493(3)	106.340(10)
γ/°	67.112(3)	113.088(2)	90	90
V/ Å ³	703.38(11)	716.27(8)	1919.6(2)	4940.4(18)
Z	2	2	4	8
Density/Mgm ⁻³	1.981	2.164	1.701	1.497
Abs. Coeff. /mm ⁻¹	1.813	1.590	1.357	0.950
F(000)	424	460	1008	2240
Refl. collected	6693	11614	32059	34149
Refl. unique	2528	2899	3947	4726
Max. 20/°	25.344	26.394	26.408	25.909
Ranges (h, k, l)	-9 <= h <= 9	-9 <= h <= 9	-9 <= h <= 9	-26 <= h <= 27

	-11 <= k <= 11	-12 <= k <= 12	-17<= k <= 17	-18<= k <= 18
	-13 <= <= 13	-13 <= <= 13	-23 <= <= 23	-18 <= l <= 18
Complete to 2θ (%)	97.9	98.6	99.9	98.0
Refl. with $I > 2\sigma(I)$	2148	2808	2844	3059
Data/	2528/0/225	2800/0/225	3917/6/289	4726/0/ 253
Restraints/Parameters	2320/0/ 233	2899707233	5547707285	
Goof (F ²)	1.090	1.132	1.048	1.053
R1 [l > 2s(l)]	0.0381	0.0302	0.0444	0.0580
wR2 [l > 2s(l)]	0.0972	0.0768	0.1015	0.1601
R1 [all data]	0.0475	0.0310	0.0768	0.0898
wR2 [all data]	0.1013	0.0775	0.1156	0.1734

Table S2. Hydrogen bond geometry (Å, °) in compounds 1-4.

Compound	D-HA	D-H (Å)	H…A (Å)	D…A (Å)	<d-h…a(°)< th=""><th>Symmetry</th></d-h…a(°)<>	Symmetry
1	08–H8A…07	0.96	2.20	3.125(3)	160.7	x+1, y+1, z
	08–H8B… 05	0.96	2.62	3.159(4)	115.6	x+1, y, z
	08–H8B… 06	0.96	2.18	2.981(3)	140.5	-x+1, -y+1, -z
	N4–H4N…O6	0.86	1.96	2.824(3)	178.7	-х, -y, -z
	09–H9A…O2	0.96	1.91	2.789(4)	151.4	-x+2, -y+1, -z+1
	09–H9B…O7	0.96	1.90	2.703(4)	139.8	-x+2, -y, -z+1
	N3–H3N…O2	0.86	2.03	2.767(4)	143.0	-
	N1-H1N…O5	0.86	2.03	2.680(4)	131.7	-x+1, -y+1, -z
2	N1-H1N…O9	0.86	2.49	3.178(3)	137.0	x-1, y, z
	N1-H1N…O5	0.86	2.14	2.742(3)	126.7	-
	08–H8A…07	0.96	2.09	2.684(3)	118.3	-х+2, -у+1, -z+1
	08–H8B…O1	0.96	1.84	2.788(3)	169.2	-x+2, -y, -z+1
	09–H9A…O8	0.96	2.01	2.952(4)	167.2	-x+3, -y, -z+1
	09–H9B…O6	0.96	1.93	2.875(3)	167.6	-х+1, -y, -z
	N3-H3N…O1	0.86	2.27	2.994(3)	142.4	-х+1, -y, -z
	N3–H3N…O5	0.86	2.60	3.203(4)	127.9	-x, -y, -z
	N4–H4N…O6	0.86	2.03	2.887(3)	173.8	-x, -y+1, -z
3	011–H11B…O1	0.88	1.88	2.762(4)	176.0	x, y+1, z
	011–H11A…O2	0.88	1.93	2.798(4)	169.0	-x+2, -y, -z+1
	012–H12A…O3	0.93	1.83	2.761(4)	178.0	-x+2, y+1/2, -z+3/2
	012–H12B…O6	0.93	1.95	2.844(4)	159.0	-x+1, -y+1, -z+1
	013-H13B…O2	0.89	1.96	2.836(4)	169.0	-x+2, y+1/2, -z+3/2
	013–H13A…O4	0.89	1.92	2.789(5)	164.0	-
	08-H8B…013	0.96	2.21	3.100(5)	153.4	-x+1, -y, -z+1
	08–H8A…011	0.96	2.38	3.208(4)	144.0	-x+1, y-1/2, -z+1/2
	O10-H10B…O4	0.96	1.99	2.951(4)	174.0	x-1, -y+1/2, z-1/2
	010-H10A…03	0.96	2.03	2.962(4)	164.3	-x+1, -y, -z+1
	09–H9B…013	0.96	2.13	3.027(5)	156.0	x, -y+1/2, z-1/2
	09–H9A…07	0.96	2.09	3.013(4)	160.2	x, -y+1/2, z-1/2

	N1-H1N…O5	0.86	1.91	2.590(3)	134.4	-
	N4-H4N…O11	0.86	2.06	2.866(4)	156.7	-x+1, -γ+1, -z+1
	O3-H3o…O8	0.79	2.41	3.198(4)	170.0	-x+2, -y, -z+1
4	09–H9B…O1	0.96	2.13	2.815(6)	127.2	-х, у, -z+1/2
	09–H9A…O5	0.96	1.98	2.894(6)	159.2	-x+1/2, -γ+1/2, -z+1
	O10-H10B…O4	0.96	2.61	3.367(7)	135.8	-x, -γ+1, -z
	010-H10A…07	0.96	2.36	2.982(6)	122.3	-
	N4-H4…O11	0.86	2.07	2.899(7)	163.0	x-1/2, -y+3/2, z-1/2
	08–H8B…O6	0.96	1.93	2.873(5)	165.7	-x+1/2, y-1/2, -z+1/2
	08–H8A…O4	0.96	1.93	2.855(7)	161.3	-x, -γ+1, -z
	04–H40…011	0.82	2.00	2.722(6)	146.6	x-1, y, z-1
	N1-H1…07	0.86	1.92	2.591(5)	134.0	-

Table S3. Selected bond distances (Å) and angles (°) for compounds 1-4.

	Bond distances		Bond angles		Bond angles		
1							
Zn1-01	1.968(2)	<04-Zn1-03	130.17(10)	<03-Zn1-01	101.77(10)		
Zn1-03	1.964(2)	<04-Zn1-01	128.01(10)	<03-Zn1-08	90.61(10)		
Zn1–O4	1.964(2)	<04-Zn1-09	89.29(12)	<01-Zn1-08	91.59(11)		
Zn1–09	2.095(3)	<04–Zn1–08	86.55(10)	<01-Zn1-09	91.15(13)		
Zn1-08	2.215(3)	<03-Zn1-09	91.89(11)	<09-Zn1-08	175.84(10)		
2							
Cd1-04	2.209(2)	<04-Cd1-O2	134.38(8)	<02-Cd1-O3	93.80(9)		
Cd1-02	2.231(2)	<04-Cd1-O3	131.04(9)	<04-Cd1-08	84.19(9)		
Cd1-03	2.244(2)	<02-Cd1-08	95.51(10)	<03-Cd1-09	84.54(8)		
Cd1-08	2.347(2)	<03-Cd1-08	82.72(9)	<08-Cd1-09	157.90(9)		
Cd1-09	2.356(2)	<04-Cd1-09	90.71(8)	<04-Cd1-01	82.74(7)		
Cd1-01	2.525(2)	<02-Cd1-09	103.30(9)	<02-Cd1-01	54.66(8)		
		<03-Cd1-01	145.66(8)	<09-Cd1-01	89.76(8)		
		<08-Cd1-01	110.80(8)				
			3				
Zn1–N3	2.010(3)	<n3-zn1-010< td=""><td>117.72(12)</td><td><010-Zn1-09</td><td>104.37(16)</td></n3-zn1-010<>	117.72(12)	<010-Zn1-09	104.37(16)		
Zn1-010	2.018(3)	<n3-zn1-08< td=""><td>109.47(12)</td><td><08-Zn1-09</td><td>109.04(17)</td></n3-zn1-08<>	109.47(12)	<08-Zn1-09	109.04(17)		
Zn1-08	2.021(3)	<n3-zn1-09< td=""><td>107.99(13)</td><td></td><td></td></n3-zn1-09<>	107.99(13)				
Zn1-09	2.043(4)	<010-Zn1-08	107.91(13)				
4							
Cd1-N3	2.246(4)	<n3-cd1-o10< td=""><td>107.07(17)</td><td><010-Cd1-02</td><td>83.87(15)</td></n3-cd1-o10<>	107.07(17)	<010-Cd1-02	83.87(15)		
Cd1-010	2.284(5)	<n3-cd1-o9< td=""><td>90.48(15)</td><td><09-Cd1-02</td><td>84.06(15)</td></n3-cd1-o9<>	90.48(15)	<09-Cd1-02	84.06(15)		
Cd1-09	2.334(4)	<010-Cd1-09	93.5(2)	<08-Cd1-02	93.45(15)		
Cd1-08	2.348(5)	<n3-cd1-08< td=""><td>90.67(15)</td><td><n3-cd1-01< td=""><td>116.15(14)</td></n3-cd1-01<></td></n3-cd1-08<>	90.67(15)	<n3-cd1-01< td=""><td>116.15(14)</td></n3-cd1-01<>	116.15(14)		
Cd1-02	2.425(4)	<010-Cd1-08	93.04(19)	<010-Cd1-01	136.62(16)		
Cd1-01	2.450(4)	<09-Cd1-08	172.72(17)	<09-Cd1-01	89.77(16)		
		<n3-cd1-o2< td=""><td>168.10(14)</td><td><08-Cd1-01</td><td>83.26(15)</td></n3-cd1-o2<>	168.10(14)	<08-Cd1-01	83.26(15)		
		<02-Cd1-01	53.46(13)				

2. Catalysis

Figure S1. FT-IR spectra and X-ray powder diffractograms of catalyst **3** before (red line) and after (black line) the Knoevenagel condensation reaction.

Figure S2. Example of integration in the ¹H-NMR spectrum for the determination of the product of the Knoevenagel condensation reaction of benzaldehyde with malononitrile (Table 1, entry 5)

Calculation of the product yield in the Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by ${\bf 3}$

Total amount of compounds at the end (see Fig. S2):

Unreacted bezaldehyde (10.03 ppm) + 2-benzylidenemalononitrile (7.80 ppm) = 1 + 15.66=16.66

Yield of 2-benzylidenemalononitrile = 15.66/16.66 X 100 = 94.0 %

3. Thermogravimetric analyses

Thermogravimetric analyses were carried out under N₂, from room temperature to ca. 750 °C at a heating rate of 5 °C min⁻¹. Features of the thermal stability of complexes **1-4** are illustrated in Figure S3.

Figure S3. Thermogravimetric curves for 1-4.

Compound **1** shows two step decompositions and loses 8.9% of its weight within 127-218°C, most likely due to loss of two coordinated water molecules (calcd: 8.6%). The remaining material then decomposes from 351°C until 527°C. Similarly, compound **2** shows a weight loss of 7.5% within 271-358°C, corresponding to the release of two coordinated water molecules (calcd: 7.7%); above this temperature, further decomposition occurs until 750°C.

Compounds **3** and **4** show a similar type of decomposition. In compound **3**, a continuous weight loss of 21.5 % occurs in the temperature range of 87-320°C, which accounts for the total removal of six water molecules (calcd: 21.9%). However, compound **4** loses seven water molecules between 44 and 350 °C (calcd: 22.9%). Above this temperature, both compounds decompose.

Figure S4.Mass spectrum of the Knoevenagel product 2-(4-nitrophenylmethylidene)malononitrile (Table 2, Entry 1).