Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

### Supplementary data for

# Arylation of thiacalix[4]arenes using organomercurial intermediates

Filip Botha,<sup>a</sup> Václav Eigner,<sup>b</sup> Hana Dvořáková,<sup>c</sup> and Pavel Lhoták<sup>a,\*</sup>

<sup>*a*</sup> Department of Organic Chemistry, University of Chemistry and Technology Prague (UCTP), Technická 5, 166 28 Prague 6, Czech Republic.

<sup>b</sup> Department of Solid State Chemistry, UCTP, Technická 5, 166 28 Prague 6, Czech Republic.

<sup>c</sup> Laboratory of NMR Spectroscopy, UCTP, Technická 5, 166 28 Prague 6, Czech Republic.

E-mail: *lhotakp@vscht.cz* 

### **Table of Contents**

| 1. | Spectra of compounds              | р. 2-33  |
|----|-----------------------------------|----------|
|    | Compound 4                        | p. 2-7   |
|    | Compound 5                        | p. 8-10  |
|    | Compound 9                        | р. 11-18 |
|    | Compound 10                       | p. 19-23 |
|    | Compound 11                       | p. 24-29 |
|    | Compound 13                       | p. 30-33 |
| 2. | Crystallographic data             | p. 34-36 |
| 3. | Spectral data of impure compounds | p. 37-38 |
|    | Compound 12                       | p. 37    |
|    | Compound 14                       | p. 38    |

<sup>\*</sup> Pavel Lhotak. Tel.: +420-220-445-055; fax: +420-220-444-288; e-mail: lhotakp@vscht.cz

## 1. Spectra of compounds



Figure 1: <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 4



Figure 2: <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 75 MHz, 298 K) of compound 4



Figure 3: <sup>1</sup>H-<sup>1</sup>H gCOSY 2D NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 4



Figure 4: <sup>1</sup>H-<sup>13</sup>C gHMQC 2D NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 4



Figure 5: <sup>1</sup>H-<sup>13</sup>C gHMBC 2D NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 4





Figure 7: HRMS spectrum of compound 4



Figure 8: Adducts in HRMS spectrum of compound 4



Figure 9: <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 5



Figure 10: <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 75 MHz, 298 K) of compound 5



Figure 11: IR spectrum (KBr) of compound 5



Figure 12: HRMS spectrum of compound 5



Figure 13: Adducts in HRMS spectrum of compound 5



Figure 14: Temperature dependent <sup>1</sup>H NMR spectra (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500.1 MHz) of compound 9





Figure 15: Temperature dependent <sup>1</sup>H NMR spectra (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500.1 MHz) of compound 9





Figure 16: <sup>13</sup>C NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 125 MHz, 243 K) of compound 9



Figure 17: <sup>1</sup>H-<sup>1</sup>H COSY 2D NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500.1 MHz, 243 K) of compound 9



Figure 18: <sup>1</sup>H-<sup>13</sup>C HMQC 2D NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500.1 MHz, 243 K) of compound 9



Figure 19: <sup>1</sup>H-<sup>13</sup>C HMBC 2D NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500.1 MHz, 243 K) of compound 9









Figure 21: HRMS spectrum of compound 9



Figure 22: Adducts in HRMS spectrum of compound 9



Figure 23: Temperature dependent <sup>1</sup>H NMR spectra (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500.1 MHz) of compound 10





Figure 24: Temperature dependent <sup>1</sup>H NMR spectra (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500.1 MHz) of compound 10





Figure 25: <sup>13</sup>C NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 125 MHz, 223 K) of compound 10



Figure 26: IR spectrum (KBr) of compound 10



Figure 27: HRMS spectrum of compound 10



Figure 28: Adducts in HRMS spectrum of compound 10



Figure 29: <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 11



Figure 30: <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 75 MHz, 298 K) of compound 11



Figure 31: <sup>1</sup>H-<sup>1</sup>H gCOSY 2D NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 11



Figure 32: <sup>1</sup>H-<sup>13</sup>C gHMQC 2D NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 11



Figure 33: <sup>1</sup>H-<sup>13</sup>C gHMBC 2D NMR spectrum (CDCl<sub>3</sub>, 300 MHz, 298 K) of compound 11



Figure 34: IR spectrum (KBr) of compound 11



Figure 35: HRMS spectrum of compound 11



Figure 36: Adducts in HRMS spectrum of compound 11



Figure 37: <sup>1</sup>H NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500 MHz, 403 K) of compound 13



Figure 38: <sup>13</sup>C NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 125 MHz, 403 K) of compound 13



Figure 39: <sup>1</sup>H-<sup>13</sup>C gHMQC 2D NMR spectrum (C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, 500 MHz, 403 K) of compound 13





Figure 40: IR spectrum (KBr) of compound 13



Figure 41: HRMS spectrum of compound 13



Figure 42: Adducts in HRMS spectrum of compound 13

### 2. Crystallographic data

The following figures show the numbering used in the crystallographic study.

Structures are depicted with displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms were omitted for sake of figures legibility (in case of 4, 5 and 9 the weakly occupied atoms were omitted as well). In case of 13 symmetry code: (i) -x,-y+2,-z+1.



Figure 43: ORTEP drawing of compound 4



Figure 44: ORTEP drawing of compound 13



Figure 45: ORTEP drawing of compound 11



Figure 46: ORTEP drawing of compound 9 (CH<sub>3</sub>CN solvate)



Figure 47: ORTEP drawing of compound 5



**Figure 48:** Disorder in **5**. The weakly occupied fragment is depicted in blue, the strongly occupied in orange.



#### 3. Spectral data of impure compounds





Figure 50: Adducts in HRMS spectrum of compound 12



Figure 51: HRMS spectrum of compound 14



PrÓ

Figure 52: Adducts in HRMS spectrum of compound 14