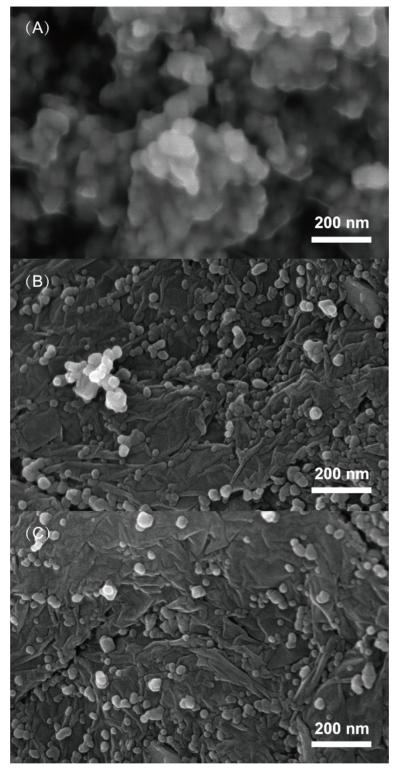
Electronic Supplementary Information (ESI) for New Journal of Chemistry

$\label{thm:cycling} \begin{tabular}{ll} Ultrahigh Cycling Stability and Rate Capability of $ZnFe_2O_4@Graphene Hybrid Anode Prepared \\ through a Facile Syn-graphenization Strategy \\ \end{tabular}$


Lei Liu^a, Rui Gao^a, Limei Sun^{b*}, Songbai Han^b, Dongfeng Chen^b, Zhongbo Hu^a, Xiangfeng Liu^{a*}

^{a.} College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

^{b.} Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China

*E-mail: liuxf@ucas.ac.cn. Tel.: +86 10 8825 6840.

*E-mail: sunlm@ciae.ac.cn Tel.: +86 10 6935 8741.

 $\textbf{Figure S1}. \ SEM \ images \ of the \ materials. \ (A)ZnFe_2O_4; \ (B)ZnFe_2O_4-RGO1; \ (C)ZnFe_2O_4-RGO2.$

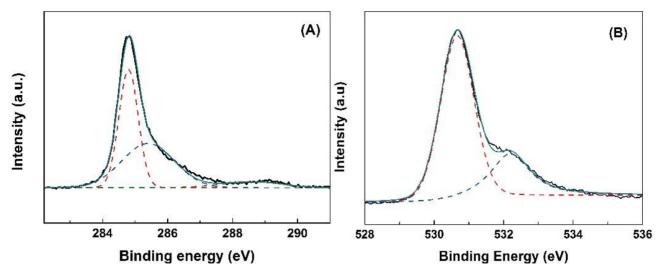


Figure S2. XPS spectra of C 1s (A) and O 1s of ZnFe₂O₄-RGO2.

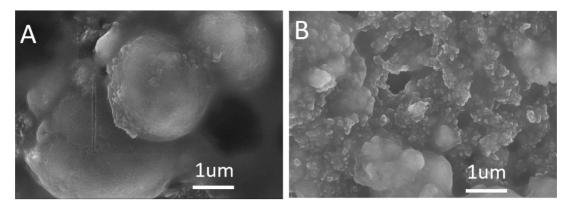


Figure S3. SEM images of samples after 20 cycles of discharge and charge. (A)ZnFe₂O₄; (B) ZnFe₂O₄-RGO2