Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

- Supplementary Information -

A family of substituted hydrazonoisoxazolones with

potential biological properties

Carlos Bustos^{a,*}, Elies Molins^b, Juan-Guillermo Cárcamo^c, Marcelo N. Aguilar^c, Christian

Sánchez^a, Ignacio Moreno-Villoslada^a, Hiroyuki Nishide^d, Ximena Zarate^e, Eduardo Schott^{f,*}

^aInstituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile. ^bInstitut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

^cInstituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile.

^dDepartment of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.

^eDirección de Postgrado e Investigacion, Universidad Autónoma de Chile, Av. Pedro de Valdivia 641, Santiago,

Chile.

^fLaboratorio de Bionanotecnologia, Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Chile.

*email: maschotte@gmail.com, Phone/Fax: 56-2-24772243.

Table S1. Selected bond lengths (Å), angles (°) and torsion angles (°) of compounds **4**, **12** y **15**, labelled according to Figure 1.

_													
	Bond	(4)	Bond	(12)	Bond	(15a)	Bond	(15b)					
-	N(4)-C(5)	1.294(3)	N(3)-C(2)	1.279(3)	C(2)-N(1)	1.278(4)	C(12)-N(11)	1.293(4)					
	C(5)-C(1)	1.432(2)	$C(1)-C(2) d_2$	1.431(3)	$C(2)-C(3) d_2$	1.438(5)	$C(12)-C(13) d_2$	1.421(4)					
	C(1)-N(1)	1.315(2)	N(1)-C(1)	1.296(3)	C(3)-N(3)	1.299(4)	C(13)-N(13)	1.310(4)					
	N(1)-N(2)	1.313(2)	N(1)-N(2)	1.307(2)	N(3)-N(4)	1.308(3)	N(13)-N(14)	1.306(3)					
	C(2)-C(1)	1.444(3)	C(1)-C(5)	1.440(3)	C(1)-C(3)	1.445(5)	C(11)-C(13)	1.451(4)					
	O(2)-C(2)	1.215(2)	O(5)-C(5)	1.207(3)	O(0)-C(1)	1.210(4)	O(10)-C(11)	1.202(4)					

N(2)-C(6)	1.419(2)	N(2)-C(21)	1.395(3)	C(4)-N(4)	1.411(4)	C(14)-N(14)	1.416(4)
C(2)-O(3)	1.361(2)	O(4)-C(5)	1.351(3)	C(1)-O(1)	1.343(4)	C(11)-O(11)	1.358(4)
N(4)-O(3)	1.475(2)	O(4)-N(3)	1.470(3)	N(1)-O(1)	1.573(4)	N(11)-O(11)	1.500(3)
Angle	(4)	Angle	(12)	Angle	(15a)	Angle	(15b)
N(1)-C(1)-C(5)	124.09(19)	N(1)-C(1)-C(2)	125.3(2)	N(3)-C(3)-C(1)	130.0(3)	N(13)-C(13)-(11)	130.3(3)
N(2)-N(1)-C(1)	119.45(18)	C(1)-N(1)-N(2)	117.81(18)	C(3)-N(3)-N(4)	120.1(3)	N(14)-N(13)-(13)	119.9(3)
O(2)-C(2)-C(1)	130.89(19)	O(5)-C(5)-C(1)	130.3(2)	O(0)-C(1)-C(3)	129.1(3)	O(10)-(11)-C(13)	131.0(3)
N(1)-N(2)-C(6)	119.71(17)	N(1)-N(2)-(21)	120.2(2)	N(3)-N(4)-C(4)	119.3(3)	N(13)-N(14)-(14)	119.6(3)

Table S2. Chemical shift of signals (δ : ppm) in the ¹³C-NMR spectra of **1-15**.

	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆ , C ₇	C ₈	C _R
1	10.01	159.72	118.16	163.14	133.53	118.68, 116.02	156.50	
2	10.35	159.44	120.07	165.55	134.17	117.79, 115.26	158.84	55.80
3	10.34	159.49	120.63	165.30	137.15	130.52, 116.25	138.30	21.20
4	10.36	159.55	121.34	165.11	140.56	129.98, 116.28	126.91	
5	10.33	159.44	121.97	165.00	139.19	130.13, 117.39	132.20	
6	10.36	159.45	122.08	164.98	139.67	133.05, 117.67	119.88	
7	10.08	160.07	122.14	161.97	144.95	130.82 116.47	127.65	166.67
8	10.39	159.51	123.39	164.57	144.03	130.51 115.88	134.98	196.55, 26.67
9	10.37	159.43	124.17	164.31	143.83	134.10, 116.40	118.37	109.50
10	10.11	160.16	123.92	161.39	146.96	125.37, 116.96	144.06	
	C ₁	C ₂	C ₃	C ₄	C ₅	$C_6, C_{7,} C_8, C_9$	C ₁₀	C _R
11	0.85	150.22	120.60	164 29	129.25	127.13, 120.31	146.20	
11	7.03	137.33	120.09	104.28	128.33	115.93, 114.71	140.39	
12	10.38	159.37	123.47	164.52	137.22	130.15, 128.41	122.23	

						126.88, 116.28		
12	0.00	159.75	122.09	1(2,22	121.26	142.65, 134.64	116 12	169.24
13	9.99		125.08	102.23	151.50	125.00, 115.12	110.12	108.34
14	9.94.	159.73	126.03	162.35	135.35	136.81, 126.00	126 50	
14						125.20, 116.88	130.39	
	C ₁	C ₂	C ₃	C ₄	C5	C ₆ , C ₇ , C ₈ , C ₁₀	C9	
15	10.29	150.49	100 47	164.90	141 70	130.98, 126.67	126 10	
13	10.38	8 159.48	122.47	164.80	141./0	116.11, 114.57	130.10	

Comp.	C(mol/L)	λ1(exp)	λ1(Th)	%	Orb.	Contril	b.	eV	f	λ2(exp)	<mark>λ2(T</mark> h)	%	Orb.	Contri	b.	eV	f	λ3(exp)	λ3(Th)	%	Orb.	Contri	b.	eV	f
1	5.05	427(4.40)	433	57	\rightarrow	58	79	2.86	0.7	300(3.43)	293	55	\rightarrow	58	77	4.23	0.04	252(4.00)	248	53	\rightarrow	58	84	4.99	0.11
2	5.05	405(4.37)	410	57	\rightarrow	58	79	3.03	0.73	260(3.94)	253	57	\rightarrow	59	82	4.9	0.1	253(4.02)	242	53	\rightarrow	58	79	5.11	0.12
3	4.93	421(4.41)	438	61	\rightarrow	62	80	2.83	0.7	303(3.42)	295	59	\rightarrow	62	64	4.2	0.04	252(4.02)	252	57	\rightarrow	62	86	4.91	0.1
4	5.05	396(4.40)	397	53	\rightarrow	54	79	3.12	0.69	255(3.99)	247	53	\rightarrow	55	83	5.03	0.09	249(4.05)	238	49	\rightarrow	54	76	5.21	0.13
5	5.05	397(4.42)	405	61	\rightarrow	62	80	3.06	0.75	258sh(3.95)	257	61	\rightarrow	63	82	4.82	0.09	250(4.05)	249	57	\rightarrow	62	82	4.99	0.12
6	4.95	399(4.45)	410	70	\rightarrow	71	81	3.03	0.77	260(3.97)	259	70	\rightarrow	72	82	4.79	0.09	251(4.06)	258	65	\rightarrow	71	87	4.81	0.1
7	5.05	396(4.50)	396	64	\rightarrow	65	80	3.14	0.87	265sh(4.04)	266	64	\rightarrow	66	73	4.67	0.22	256(4.07)	248	64	\rightarrow	67	65	5	0.01
8	5.05	399(4.36)	399	64	\rightarrow	65	80	3.11	0.91	276(3.89)	278	64	\rightarrow	66	65	4.47	0.16	254(3.89)	252	62	\rightarrow	66	51	4.92	0.01
																				64		67	45		
9	5.05	391(4.50)	394	59	\rightarrow	60	80	3.15	0.89	264sh(4.03)	259	59	\rightarrow	61	64	4.78	0.28	254(4.09)	250	59	\rightarrow	62	73	4.97	0.02
10	5.05	400(4.59)	410	64	\rightarrow	65	82	3.03	0.98	297(3.73)	297	61	\rightarrow	65	82	4.17	0.04	222sh(3.98)	228	58	\rightarrow	65	84	5.44	0.03
11	5	425(4.37)	430	57	\rightarrow	58	79	2.88	0.54	259sh(3.78)	248	57	\rightarrow	59	74	5.01	0.04	245(3.98)	236	53	\rightarrow	58	65	5.27	0.11
12	5.05	395(4.17)	399	61	\rightarrow	62	80	3.11	0.64	260(3.71)	251	61	\rightarrow	63	83	4.93	0.08	252(3.80)	241	56	\rightarrow	62	72	5.15	0
13	5.05	399(4.41)	390	64	\rightarrow	65	79	3.2	0.65	273sh(3.86)	289	61	\rightarrow	65	57	4.3	0.07	264(3.97)	278	60	\rightarrow	65	83	4.5	0.03
14	5.05	410(4.32)	420	64	\rightarrow	65	75	2.95	0.25	343(4.09)	355	64	\rightarrow	66	74	3.5	0.32	281(3.99)	276	62	\rightarrow	66	72	4.49	0.01
15	5	390(4.32)	393	61	\rightarrow	62	79	3.16	0.7	260sh(3.91)	252	61	\rightarrow	63	80	4.91	0.05	252(4.00)	244	57	\rightarrow	62	80	5.09	0.19

Table S3. Experimental (exp) and calculated (Th.) wavelength (nm), Energy (eV), Oscillator Strength (f), Active MOs and their contributions for the vertical excitations from TDDFT for the λ max.

Figure S1. Effect of paclitaxel on cell viability of HL-60 and U937 cells. The cytotoxic effect induced on cell lines HL-60 and U-937 after the exposure to different concentrations of paclitaxel (0 - 200 μ M) by 24 h was expressed as viability percentage change compared to the control sample (untreated cells). The IC50 values were obtained from dose-response curves by no-linear regression using GraphPad Prism software, the IC50values obtained were 3.1 ± 1 and 41 ± 7 μ M for HL-60 and U-937 cells, respectively. Results shown for each cell line correspond to two independent experiments each in triplicate, and the IC50 values are presented as mean ± SD.

Paclitaxel (trade names: Taxol®, OnxalTM) is an anti-cancer ("antineoplastic" or "cytotoxic") chemotherapy drug, being classified as a "plant alkaloid," a "taxane" and an "antimicrotubule agent." Paclitaxel is used for treatment of breast, ovarian, lung, bladder, prostate, melanoma, esophageal, as well as other types of solid tumor cancers. It has also been used in Kaposi's sarcoma (http://chemocare.com/chemotherapy/drug-info/Paclitaxel.aspx)

Figure S2. FMOs for all the synthetized compounds.

Compound (1) UV-Vis Spectra

FT-IR Spectra

HMBC Spectra

Compound (2) UV-Vis Spectra

FT-IR Spectra

Compound (3)

¹H-NMR Spectra

¹³C-NMR Spectra

HMBC Spectra

FT-IR Spectra

HMBC Spectra

FT-IR Spectra

¹H-NMR Spectra

Compound (7)

¹H-NMR Spectra

2500 2000 Wavenumber [cm-1]

1500

1000

550

55 L 4000

3500

3000

HMBC Spectra

FT-IR Spectra

¹H-NMR Spectra

HMBC Spectra

FT-IR Spectra

nm

400

350

450

500

550,0

250

300

210,0

¹³C-NMR Spectra

Compound (11)

¹H-NMR Spectra

FT-IR Spectra

Compound (13)

Compound (14) UV-Vis Spectra

Compound (15)

HMBC Spectra

COMPUESTO (4)

Table 54. Crystal data and structure refine	ment for 4.					
Identification code	Xv4					
Empirical formula	C10 H9 N3 O2					
Formula weight	203.20					
Temperature	294(2) K					
Wavelength	0.71073 Å					
Crystal system	Monoclinic					
Space group	C 2/c					
Unit cell dimensions	$a = 11.117(4) \text{ Å} \qquad \alpha = 90^{\circ}.$					
	b = 7.955(2) Å	β=95.76(2)°.				
	c = 21.817(4) Å	$\gamma = 90^{\circ}$.				
Volume	1919.9(9) Å ³					
Ζ	8					
Density (calculated)	1.406 Mg/m ³					
Absorption coefficient	0.102 mm ⁻¹					
F(000)	848					

Table SA Crystal data and structure refinement for A

Crystal size	0.41 x 0.38 x 0.32 mm ³
Theta range for data collection	1.88 to 25.97°.
Index ranges	-13<=h<=13, 0<=k<=9, 0<=l<=26
Reflections collected	1893
Independent reflections	1893
Completeness to theta = 25.97°	100.0 %
Max. and min. transmission	0.9681 and 0.9594
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1893 / 0 / 122
Goodness-of-fit on F ²	0.981
Final R indices [I>2sigma(I)]	R1 = 0.0459, wR2 = 0.0989
R indices (all data)	R1 = 0.1056, wR2 = 0.1120
Largest diff. peak and hole	0.149 and -0.219 e.Å-3

Table S5. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for (4). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
C(1)	1938(2)	230(3)	6015(1)	38(1)	
C(2)	2706(2)	-1236(3)	6029(1)	45(1)	
C(5)	1816(2)	650(3)	6644(1)	41(1)	
C(6)	1024(2)	1474(3)	4465(1)	37(1)	
C(7)	291(2)	2840(3)	4548(1)	45(1)	
C(8)	-212(2)	3692(3)	4031(1)	54(1)	
C(9)	7(2)	3207(3)	3444(1)	54(1)	
C(10)	743(2)	1842(3)	3372(1)	50(1)	
C(11)	1256(2)	963(3)	3881(1)	44(1)	
C(51)	1120(2)	2049(3)	6875(1)	56(1)	
N(1)	1429(2)	1077(2)	5540(1)	39(1)	
N(2)	1567(2)	561(2)	4980(1)	42(1)	
N(4)	2410(2)	-391(3)	7016(1)	53(1)	
O(2)	3084(2)	-2036(2)	5614(1)	59(1)	
O(3)	2994(2)	-1616(2)	6634(1)	58(1)	

C(1)-N(1)	1.315(2)
C(1)-C(5)	1.432(2)
C(1)-C(2)	1.444(3)
C(2)-O(2)	1.215(2)
C(2)-O(3)	1.361(2)
C(5)-N(4)	1.294(3)
C(5)-C(51)	1.473(3)
C(6)-C(7)	1.380(3)
C(6)-C(11)	1.386(2)
C(6)-N(2)	1.419(2)
C(7)-C(8)	1.385(3)
C(8)-C(9)	1.382(3)
C(9)-C(10)	1.377(3)
C(10)-C(11)	1.387(3)
N(1)-N(2)	1.3133(19)
N(4)-O(3)	1.475(2)
N(1)-C(1)-C(5)	124.09(19)
N(1)-C(1)-C(2)	129.63(18)
C(5)-C(1)-C(2)	106.27(17)
O(2)-C(2)-O(3)	122.7(2)
O(2)-C(2)-C(1)	130.89(19)
O(3)-C(2)-C(1)	106.36(17)
N(4)-C(5)-C(1)	111.2(2)
N(4)-C(5)-C(51)	121.38(19)
C(1)-C(5)-C(51)	127.44(18)
C(7)-C(6)-C(11)	121.17(18)
C(7)-C(6)-N(2)	120.62(16)
C(11)-C(6)-N(2)	118.2(2)
C(6)-C(7)-C(8)	118.33(19)
C(9)-C(8)-C(7)	121.5(2)
C(10)-C(9)-C(8)	119.2(2)
C(9)-C(10)-C(11)	120.5(2)
C(6)-C(11)-C(10)	119.3(2)

Table S6. Bond lengths [Å] and angles $[\circ]$ for 4.

.

N(2)-N(1)-C(1)	119.45(18)
N(1)-N(2)-C(6)	119.71(17)
C(5)-N(4)-O(3)	107.08(16)
C(2)-O(3)-N(4)	109.10(16)

Table S7. Anisotropic displacement parameters (Å²x 10³) for xv4. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²	
	2 ((1)				- (4)	• (1)	
C(1)	36(1)	37(1)	41(1)	1(1)	5(1)	-2(1)	
C(2)	41(1)	46(1)	47(1)	-1(1)	3(1)	-2(1)	
C(5)	37(1)	45(1)	42(1)	4(1)	4(1)	-5(1)	
C(6)	33(1)	38(1)	39(1)	3(1)	3(1)	-6(1)	
C(7)	46(1)	42(1)	45(1)	0(1)	5(1)	3(1)	
C(8)	51(2)	50(2)	60(1)	6(1)	1(1)	6(1)	
C(9)	56(2)	54(2)	50(1)	11(1)	-6(1)	-3(1)	
C(10)	54(2)	55(2)	42(1)	1(1)	4(1)	-8(1)	
C(11)	44(1)	42(1)	48(1)	-2(1)	9(1)	-4(1)	
C(51)	57(2)	63(2)	50(1)	-12(1)	11(1)	3(1)	
O(2)	62(1)	53(1)	63(1)	-8(1)	10(1)	9(1)	
O(3)	63(1)	56(1)	55(1)	8(1)	1(1)	16(1)	