Supporting Information

Properties of methylene blue in the presence of zeolite nanoparticles

Hussein Awala,^a Elsa Leite,^b Loïc Saint-Marcel,^b Guillaume Clet,^a Richard Retoux,^c Izabela Naydenova,^{b,*} and Svetlana Mintova^{a,*}

^aLCS, ENSICAEN, Université de Caen Basse-Normandie, CNRS, 6, boulevard du Maréchal Juin, 14050 Caen Cedex, France ^bCentre for Industrial and Engineering Optics, School of Physics, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland ^cCRISMAT, ENSICAEN, Université de Caen Basse-Normandie, CNRS, 6, boulevard du Maréchal Juin, 14050 Caen Cedex, France

* Corresponding authors: <u>svetlana.mintova@ensicaen.fr</u>, <u>izabela.naydenova@dit.ie</u>

Fig. S1 DLS curves of MB- containing zeolite suspensions (LTL-MB, BEA-MB and LTA-MB).

Fig. S2 Zeta potential values of (a) pure zeolite suspensions and (b) MB- containing zeolite suspensions (LTL-MB, BEA-MB and LTA-MB).

Fig. S3 X-ray diffraction patterns of (a) LTL-MB, (b) BEA-MB and (c) LTA-MB zeolite samples.

Fig. S4 UV-Vis spectrum of pure methylene blue (MB) sample.

Fig. S5 Zeolite suspensions and water clear solutions after removal of zeolite particles loaded with MB by high-speed centrifugation.

Fig. S6 IR spectra of LTL (black) and LTL-MB (gray) samples.

Fig. S7 IR spectra of BEA (black) and BEA-MB (gray) samples.

Fig. S8 IR spectra of LTA (black) and LTA-MB (gray) samples.

Fig. S9 TG curve of pure MB sample.

Fig. S10 TG data of A: (a) LTL and (b) LTL-MB; B: (a) BEA and (b) BEA-MB sample; C: (a) LTA and (b) LTA-MB.

Fig. S11 TG and DTG results of LTL-MB sample.