New Journal of Chemistry

Electronic Supplementary Materials

Donor–acceptor type polymers containing 2,3-bis(2-pyridyl)-5,8-dibromoquinoxaline acceptor and different thiophenes donors: Electrochemical, spectroelectrochemistry and electrochromic properties

Shuang Chen^{1,2}, Di Zhang^{1,2}, Min Wang², Lingqian Kong³, Jinsheng Zhao^{2*}

¹Department of Chemical Engineering, China University of Petroleum (East China),

QingDao, 266580, P. R. China

²Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology,

Liaocheng University, Liaocheng, 252059, P. R. China

Corresponding author, Tel: +86-635-8539607; Fax: +86-635-8539607.

E-mail address: j.s.zhao@163.com (j.s.zhao);

Fig. S1. (a) ¹H NMR spectrum of 2,3-di(2-pyridyl)-5,8-bis(2-thienyl) quinoxaline (PTQ) in CDCl₃. (b) ¹³C NMR spectrum of PTQ in CDCl₃.

Fig. S2. (a) ¹H NMR spectrum of 2,3-di(2-pyridyl)-5,8-bis(3-butylthiophen-2-yl)) quinoxaline (PBTQ) in CDCl₃. (b) ¹³C NMR spectrum of PBTQ in CDCl₃. Solvent peak at $\delta = 77.26$ ppm is marked by 'X'.

Fig.S3.(a) 1 HNMRspectrumof2,3-di(2-pyridyl)-5,8-bis(2-(3,4-ethylenedioxythienyl))quinoxaline (PETQ) in CDCl3.(b) 13 CNMRspectrumof PETQ in CDCl3.Solvent peak at $\delta = 77.174$ ppm is markedby 'X'.

Fig. S4. Cyclic voltammogram curves of PBTQ (a) and PETQ (b) in 0.1 M TBAPF₆/ DCM solution at a scan rate of 100 mV s⁻¹ respectively. *j* denotes the current density. E denotes the potential.

Fig.S5. The electrochemical polymerization mechanism of the synthesis of the polymer PPTQ

Fig. S6. (a) CV curves of PPTQ at different scan rates between 50 and 300 mV s⁻¹ in the monomer-free 0.1 M TBAPF₆/DCM solution. Inset shows scan rate dependence of the anodic and cathodic peak current densities graph. $j_{p,c}$ denotes cathodic peak current densities. (b) The cyclic voltammogram of the PTQ monomer at scan rate 100 mV s⁻¹.

Fig. S7. (a) CV curves of PPBTQ at different scan rates between 50 and 300 mV s⁻¹ in the monomer-free 0.1 M TBAPF₆/DCM solution. Inset shows scan rate dependence of the anodic and cathodic peak current densities graph. $j_{p.a}$ and $j_{p.c}$ denote the anodic and cathodic peak current densities, respectively. (b) The cyclic voltammogram of the PBTQ monomer at scan rate 100 mV s⁻¹.

Fig. S8. The cyclic voltammogram of the PETQ monomer at scan rate 100 mV s^{-1} .

Fig.S9. The step profiler images of PPTQ (a), PPBTQ(b) and PPETQ (c) films deposited potentiostatically on ITO electrode with the same polymerization charge of 2.0×10^{-2} C at a surface area of 0.9×1.8 cm².

Fig. S10. The optimized geometries and the molecular orbital surfaces of the HOMOs and LUMOs for three monomers.