New Journal of Chemistry

Electronic Supplementary Materials

Donor-acceptor type polymers containing

2,3-bis(2-pyridyl)-5,8-dibromoquinoxaline acceptor and different thiophenes donors: Electrochemical, spectroelectrochemistry and electrochromic properties

Shuang Chen ${ }^{1,2}$, Di Zhang ${ }^{1,2}$, Min Wang ${ }^{2}$, Lingqian Kong ${ }^{3}$, Jinsheng Zhao ${ }^{2 *}$
${ }^{1}$ Department of Chemical Engineering, China University of Petroleum (East China), QingDao, 266580, P. R. China
${ }^{2}$ Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, P. R. China
Corresponding author, Tel: +86-635-8539607; Fax: +86-635-8539607.
E-mail address: j.s.zhao@163.com (j.s.zhao);

Fig. S1. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of 2,3-di(2-pyridyl)-5,8-bis(2-thienyl) quinoxaline (PTQ) in CDCl_{3}. (b) ${ }^{13} \mathrm{C}$ NMR spectrum of PTQ in CDCl_{3}.

Fig. S2. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of 2,3-di(2-pyridyl)-5,8-bis(3-butylthiophen-2-yl)) quinoxaline (PBTQ) in CDCl_{3}. (b) ${ }^{13} \mathrm{C}$ NMR spectrum of PBTQ in CDCl_{3}. Solvent peak at $\delta=77.26 \mathrm{ppm}$ is marked by ' X '.
(a)

Fig.
S3.
(a)
${ }^{1} \mathrm{H}$
NMR
spectrum
of
2,3-di(2-pyridyl)-5,8-bis(2-(3,4-ethylenedioxythienyl)) quinoxaline (PETQ) in CDCl_{3}.
(b) ${ }^{13} \mathrm{C}$ NMR spectrum of PETQ in CDCl_{3}. Solvent peak at $\delta=77.174 \mathrm{ppm}$ is marked by ' X '.

Fig. S4. Cyclic voltammogram curves of PBTQ (a) and PETQ (b) in $0.1 \mathrm{M} \mathrm{TBAPF}_{6} /$ DCM solution at a scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$ respectively. j denotes the current density. E denotes the potential.

Fig.S5. The electrochemical polymerization mechanism of the syntheis of the polymer PPTQ

Fig. S6. (a) CV curves of PPTQ at different scan rates between 50 and $300 \mathrm{mV} \mathrm{s}^{-1}$ in the monomer-free $0.1 \mathrm{M} \mathrm{TBAPF}_{6} / \mathrm{DCM}$ solution. Inset shows scan rate dependence of the anodic and cathodic peak current densities graph. $j_{\text {p.c }}$ denotes cathodic peak current densities. (b) The cyclic voltammogram of the PTQ monomer at scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. S7. (a) CV curves of PPBTQ at different scan rates between 50 and $300 \mathrm{mV} \mathrm{s}^{-1}$ in the monomer-free $0.1 \mathrm{M} \mathrm{TBAPF}_{6} / \mathrm{DCM}$ solution. Inset shows scan rate dependence of the anodic and cathodic peak current densities graph. $j_{\text {p.a }}$ and $j_{\text {p.c }}$ denote the anodic and cathodic peak current densities, respectively. (b) The cyclic voltammogram of the PBTQ monomer at scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. S8. The cyclic voltammogram of the PETQ monomer at scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Fig.S9. The step profiler images of PPTQ (a), PPBTQ(b) and PPETQ (c) films deposited potentiostatically on ITO electrode with the same polymerization charge of $2.0 \times 10^{-2} \mathrm{C}$ at a surface area of $0.9 \times 1.8 \mathrm{~cm}^{2}$.

Fig. S10. The optimized geometries and the molecular orbital surfaces of the HOMOs and LUMOs for three monomers.

