Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information

Manuscript IDNJ-ART-09-2015-002681

New organometallic Schiff-base copper complexes

as efficient "click" reaction precatalysts

Xiang Liu, Néstor Novoa, Carolina Manzur, David Carrillo and Jean-René Hamon

Contents

1. Fig. S1 Solid-state FT-IR spectra of complex 2, PMMA and complex 3	2
2. Fig. S2 ¹ H-NMR spectra of the complexes $3a$ and $3b$	3
3. Figs. S3-S6 TEM and ¹ H-NMR spectra showing the absence of Cu species in solution	4
4. Spectral data of the 1,4-disubstituted 1,2,3-triazoles 4a-m	9
5. ¹ H and ¹³ C NMR spectra of the 1,4-disubstituted 1,2,3-triazoles 4a-m	16
(Figs. S7-S25)	

1

Fig. S1 Solid-state FT-IR spectrum of the heterobimetallic Schiff base complex **2** (black), free PMMA matrix (red), and metallopolymer **3** (blue)

Fig. S2 ¹**H-NMR** spectrum of the complexes **3a** and **3b**: The **red spectrum** was obtained following reaction between 0.5 mg complex **3** and 2 equiv. NaBH₄ in DMSO-d₆. The free metalloligand is obtained as indicated by the presence of signals of H^a at 8.35 and 8.49 ppm. This free ligand is seemingly obtained upon decoordination from Cu(0) after reaction of **3** with NaBH₄ The fate of copper nanoparticles formed in this reaction was not researched further, but their stabilization by such a Schiff-base ligands may be later investigated. The **green spectrum** was obtained following reaction between 0.5 mg complex **3** and 2 equiv. sodium ascorbate in DMSO-d₆. It shows a diamagnetic complex that is obtained with a new imine signal at 9.63 ppm consistent with the generation of a Cu^I complex. It appears to be very different from the **red spectrum** obtained with NaBH₄, in accord with the single electron reduction of **3** upon reaction with sodium ascorbate.

3. Figs. S3-S6 TEM and ¹H-NMR spectra showing the absence of Cu species in solution

The residual copper in solution that would eventually result from the reaction between the PMMA-anchored catalyst **3** (10.5 mg, 2 mol%) and sodium ascorbate (20 mol%) has been checked after the 3rd catalytic recycling as follows:

The system was purged three times with N_2 and ethynylbenzene (0.50 mmol), (azidomethyl)benzene (0.50 mmol) and 2 mL of degassed ethanol were successively added by syringe. The resulting mixture was stirred for 24 h at rt under N_2 . After 3 recycling, complex **3** was filtered through a paper filter. The organic solution (B) was divided into two parts. One part was used for and TEM (Scheme 2). The other part was concentrated *in vacuo*, and the residue was checked by ¹H-NMR.

Fig. S3 Transmission electron microscopy (TEM) picture of the organic solution (B) showing that there is no nanoparticles in solution (B), consistent with reduction of Cu^{2+} from PMMA-anchored catalyst **3** to Cu⁺ by sodium ascorbate.

The Fig. **S4**, **S5** and **S6** (¹H-NMR spectra of the click reaction product, triazole) together show the absence of copper salt in solution. Taken together with the TEM picture that shows the absence of nanoparticules in this solution, this is proof for the absence of leached copper from **3** during catalysis. The details of the NMR samples in **Figs**. **S4**, **S5** and **S6** follow:

Fig. S4: After the click reaction, the complex 3 was removed by filtration on filter paper; then the solvent was removed *in vacuo*, and the ¹H NMR spectrum of 10 mg of the residue in CDCl₃ that was recorded is shown.

Fig. S5: After the click reaction, complex **3** was removed by filter paper; then the solvent was removed *in vacuo*, and a 2% mmol sodium ascorbate was added to 10 mg of the residue in CDCl₃. The signal of H^a (triazole) is located at 7.60 ppm (as shown in the **Fig.S4**). This signal is the same as in the purified product **4a** without change.

Fig. S6: After the click reaction, complex **3** was removed by filtration on filter paper, then the solvent was removed *in vacuo*, and 20% mmol CuSO₄ and 40% sodium ascorbate were added to 10 mg of the residue. The ¹H NMR spectrum in CDCl₃ is shown. 20 % of the signal of H^a (triazole) is shifted from 7.60 ppm to 7.99 ppm. This shift is known to be due to the coordination of triazole to Cu¹. Since this shift is not observed in **Fig. S5**, this means that there is no Cu²⁺ in the solution resulting from the click reaction catalyzed by complex **3**.

Fig. S4 After the click reaction, the complex **3** was removed by filtration on filter paper; then the solvent was removed *in vacuo*, and the ¹H NMR spectrum of 10 mg of the residue in CDCl₃ that was recorded is shown.

Fig. S5 After the click reaction, complex **3** was removed by filter paper; then the solvent was removed *in vacuo*, and a 2% mmol sodium ascorbate was added to 10 mg of the residue in CDCl₃.

Fig. S6 After the click reaction, complex 3 was removed by filtration on paper filter, then the solvent was removed in vacuo, and 20% mmol CuSO₄ and 40% sodium ascorbate were added to 10 mg of the residue. The ¹H NMR spectrum in CDCl₃ is shown.

8

4. Spectral data of the 1,4-disubstituted 1,2,3-triazoles 4a-m

4.1. 1-benzyl-4-phenyl-1H-1,2,3-triazole (4a)

 $C_6H_5-C\equiv CH (51 \text{ mg}), C_6H_5CH_2N_3 (66.5 \text{ mg}), \text{ complex } 2 (0.5 \text{ mg}); \text{ white solid, yield: } 108 \text{ mg}, 92.0\%.$ ¹H NMR (300 MHz, CDCl₃): δ 7.75-7.73 (d, J = 6Hz, 2H), 7.60 (s, 1H), 7.32-7.23 (m, 4H), 7.20 (s, 4H), 5.52 (s, 2H).

4.2. 1-(3-methylbenzyl)-4-phenyl-1H-1,2,3-triazole (4b)

 C_6H_5 -C=CH (51 mg), 3-MeC₆H₄CH₂N₃ (80 mg), complex **2** (0.5 mg); white solid, yield: 116 mg, 88.7%. ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.80 (d, J = 6 Hz, 2H), 7.72(s, 1H), 7.48-7.16 (m, 7H), 5.62 (s, 2H), 2.44 (s, 3H).

4.3. 1,4-diphenyl-1H-1,2,3-triazole (4c)

 $C_6H_5-C \equiv CH (51 \text{ mg}), C_6H_5N_3 (60 \text{ mg}), \text{ complex } 2 (0.5 \text{ mg}); \text{ white solid, yield: 97 mg}, 88.5\%).$ ¹H NMR (300 MHz, CDCl₃): $\delta 8.13 (s, 1H), 7.86-7.84 (d, J = 6 \text{ Hz}, 2H), 7.75-7.72 (d, J = 9 \text{ Hz}, 2H), 7.49-7.31 (m, 6H).$

4.4. 1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole(4d)

 $C_6H_5-C \equiv CH (51 \text{ mg}), 4-BrC_6H_4CH_2N_3 (105 \text{ mg}), \text{ complex } 2 (0.5 \text{ mg}); \text{ white solid, yield: } 146 \text{ mg}, 93.4\%.$ ¹H NMR (300 MHz, CDCl₃): $\delta 7.84-7.79 \text{ (m, 2H)}, 7.67 \text{ (s, 1H)}, 7.46-7.27 \text{ (m, 7H)}, 5.59 \text{ (s, 2H)}.$ 4.5. 4-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile (4e)

C₆H₅-C=CH (51 mg), 4-CNC₆H₄CH₂N₃ (79 mg), complex **2** (0.5 mg); white solid, yield: 107 mg, 82.5%. ¹H NMR (300 MHz, CDCl₃): δ7.77-7.64 (m, 2H), 7.64-7.59 (m, 3H), 7.40-7.19 (m, 5H), 5.59 (s, 2H).

4.6. 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (4f)

4-MeOC₆H₄-C=CH (66 mg), C₆H₅CH₂N₃ (66.5 mg), complex **2** (0.5 mg); white solid, yield: 116 mg, 87.5%. ¹H NMR (300 MHz, CDCl₃): δ7.76-7.74 (d, J = 6 Hz, 2H), 7.60 (s, 1H), 7.42-7.39 (t, J = 4.5 Hz, 3H), 7.34-7.33 (m, 2H), 7.28 (s, 4H), 6.97-6.95 (d, J = 6 Hz, 2H), 5.59 (s, 2H), 3.85 (s, 3H).

4.7. 1-benzyl-4-(4-bromophenyl)-1H-1,2,3-triazole(4g)

4-BrC₆H₄-C≡CH (90 mg), C₆H₅CH₂N₃ (66.5 mg), complex **2** (0.5 mg); white solid, yield: 146 mg, 93.6%. ¹H NMR (300 MHz, CDCl₃): δ7.71-7.69 (d, J = 6 Hz, 2H), 7.56-7.54 (d, J = 6 Hz, 2H), 7.43-7.41 (d, J = 6 Hz, 2H), 7.45-7.33 (m, 2H), 7.28 (s, 2H), 5.60 (s, 2H). **4.8. 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine (4h)**

2-NC₅H₄-C=CH (52 mg), C₆H₅CH₂N₃ (66.5 mg), complex **2** (0.5 mg); white solid, yield: 108 mg, 91.3%. ¹H NMR (300 MHz, CDCl₃): δ 8.49 (s, 1H), 8.15-8.14 (d, J = 3 Hz, 2H), 7.74 (s, 1H), 7.30-7.27 (m, 4H), 7.19-7.14 (m, 2H), 5.51 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 149.7, 148.8, 137.8, 137.2, 134.5, 129.4, 129.0, 128.7, 128.5, 126.3, 120.7, 54.6.

4.9. -(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4i)

2-NC₅H₄-C=CH (52 mg), C₆H₅N₃ (60 mg), complex **2** (0.5 mg); white solid (yield: 100 mg, 90.4%). ¹H NMR (300 MHz, CDCl₃): δ 8.85 (s, 1H), 8.66 (s, 1H), 8.33-8.31 (d, J = 6 Hz, 1H), 7.91 -7.82 (m, 3H), 7.56-7.46 (m, 2H), 7.33 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 149.5, 148.7, 147.9, 138.3, 137.1, 130.1, 129.2, 123.5, 121.1, 120.9, 120.7.

4.10. 2-(1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)pyridine (4j)

2-NC₅H₄-C=CH (52 mg), 4-BrC₆H₄CH₂N₃ (105 mg), complex **2** (0.5 mg); white solid, yield: 145 mg, 92.5%. ¹H NMR (300 MHz, CDCl₃): δ 8.48-8.47 (d, J = 3 Hz, 1H), 8.12-8.10 (d, J = 6 Hz, 1H), 7.99 (s, 1H), 7.74-7.71 (t, J = 4.5 Hz, 1H), 7.45-7.43 (d, J = 6 Hz, 2H), 7.19-7.12 (m, 4H), 5.47 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 150.2, 149.6, 149.1, 137.2, 134.1, 133.5, 132.6, 130.1, 123.3, 122.1, 120.5, 53.9.

4.11. 4-((4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)methyl)benzonitrile(4k)

2-NC₅H₄-C≡CH (52 mg), 4-CNC₆H₄CH₂N₃ (79 mg), complex **2** (0.5 mg); white solid, yield: 109 mg, 83.5%. ¹H NMR (300 MHz, CDCl₃): δ8.46-8.43 (d, J = 6 Hz, 1H), 8.13-8.06 (m, 2H), 7.75-7.73 (t, J = 3 Hz, 1H), 7.62-7.59 (d, J = 9 Hz, 2H), 7.35-7.32 (d, J = 9 Hz, 2H), 7.20-7.16 (m, 1H), 5.59 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ149.1, 149.6, 149.3, 139.8, 137.3, 133.1, 128.8, 123.4, 122.4, 120.5, 118.3, 113.1, 53.8.

4.12. 2-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)pyridine (4l)

2-NC₅H₄-C=CH (52 mg), 4-BrC₆H₄N₃ (98 mg), complex **2** (0.5 mg); white solid, yield: 136 mg, 90.4%. ¹H NMR (300 MHz, CDCl₃): δ 8.64 (s, 1H), 8.64-8.63 (d, J = 3 Hz, 1H), 8.30-8.28 (d, J = 6 Hz, 1H), 7.75-7.68 (m, 1H), 7.67-7.35 (m, 4H), 7.30-7.28 (m, 1H). ¹³C NMR

(75 MHz, CDCl₃): *δ*149.7, 149.3, 148.9, 137.6, 136.1, 133.2, 123.5, 122.7, 122.0, 120.8, 120.2.

4.13. 2-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)pyridine (4m)

2-NC₅H₄-C=CH (52 mg), 4-MeOC₆H₄N₃ (75 mg), complex **2** (0.5 mg); white solid, yield: 111 mg, 88.4%. ¹H NMR (300 MHz, CDCl₃): δ 8.55-8.53(d, J = 6 Hz, 1H), 8.46 (s, 1H), 8.19-8.16 (d, J = 9 Hz, 1H), 7.77-7.74(t, J = 4.5 Hz, 1H), 7.64-7.61 (d, J = 9 Hz, 2H), 7.21-7.17 (m, 1H), 6.98-6.95 (m, 2H), 3.80 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 160.1, 150.2, 149.8, 148.9, 137.2, 130.6, 123.2, 122.2, 120.6, 120.3, 115.0, 55.8.

5. ¹H and ¹³C NMR spectrum of the 1,4-disubstituted 1,2,3-triazoles 4a-m

Fig. S7. 300 MHz ¹H NMR spectra of **4a** recorded in CDCl₃ at 298 K

Fig. S8. 300 MHz ¹H NMR spectra of **4b** recorded in CDCl₃ at 298 K

Fig. S9. 300 MHz ¹H NMR spectra of **4c** recorded in CDCl₃ at 298 K

Fig. S10. 300 MHz 1 H NMR spectra of 4d recorded in CDCl₃ at 298 K

Fig. S11. 300 MHz ¹H NMR spectra of **4e** recorded in CDCl₃ at 298 K

Fig. S12. 300 MHz 1 H NMR spectra of **4f** recorded in CDCl₃ at 298 K

Fig. S13 300 MHz ¹H NMR spectra of **4g** recorded in CDCl₃ at 298 K

Fig. S14 300 MHz ¹H NMR spectra of **4h** recorded in CDCl₃ at 298 K

Fig. S15. 75 MHz ^{13}C NMR spectra of 4h recorded in CDCl_3 at 298 K

Fig. S17 75 MHz ¹³C NMR spectra of **4i** recorded in CDCl₃ at 298 K

Fig. S19 75 MHz 13 C NMR spectra of 4j recorded in CDCl₃ at 298 K

Fig. S20 300 MHz 1 H NMR spectra of 4k recorded in CDCl₃ at 298 K

Fig. S21 75 MHz 13 C NMR spectra of 4k recorded in CDCl₃ at 298 K

Fig. S22 300 MHz ¹H NMR spectra of **4I** recorded in CDCl₃ at 298 K

Fig. S23 75 MHz 13 C NMR spectra of 4l recorded in CDCl₃ at 298 K

Fig. S24 300 MHz 1 H NMR spectra of 4m recorded in CDCl₃ at 298 K

Fig. S25 75 MHz 13 C NMR spectra of **4m** recorded in CDCl₃ at 298 K