Support Information

Microwave-accelerated direct synthesis of 3-picoline from glycerol through a liquid phase reaction pathway

Cai-Wu Luo^{a, b} Xiao-Yan Feng^c and Zi-Sheng Chao^{a,*}

^a College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
^b School of Environmental Protection and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
^c College of Chemistry and Chemical Engineering, State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China

* Corresponding author: Prof. Zi-Sheng Chao;

Tel: +86-731-88713257;

E-mail address: chao_zs@aliyun.com or zschao@yahoo.com

1. Characterizations

N₂-physisorption was conducted on a Quantachrome Autosorb-1 instrument at liquid-N₂ temperature. Before measurement, the specimen was in situ outgassed in the instrument at 300 °C for 12 h under a vacuum of 10⁻⁸ Torr. The Brunauer–Emmett–Teller (BET) method was employed to calculate the specific surface area, with the correlation coefficient being above 0.9999. The total pore volume was calculated at a relative pressure of $P/P_0 = 0.99$, assuming full surface coverage with nitrogen. The "t-plot" method was used to estimate the micropore area and volume.

Ammonia temperature-programmed desorption (NH₃-TPD) profile was recorded by a Micromeritics AutoChem II 2920 analyzer equipped with a TCD detector. The specimen (170 mg) was first heated by a rate of 10 °C·min⁻¹ from room temperature to 400 °C in a stream of helium (99.99%, 60 mL·min⁻¹) and pretreated at that temperature and atmosphere for 0.5 h. Then, the specimen was cooled to 100 °C and subjected to ammonia-saturation in a stream of 5% NH₃/He with a flow rate of 50 mL·min⁻¹. After the sample was purged with helium at 100 °C for 1 h, ammonia was desorbed by heating the specimen to 800 °C at a rate of 10 °C·min⁻¹.

Figure S1

Fig. S1. Effect of reaction time (min) on the production of 3-picoline under microwave irradiation. (Reaction conditions: reaction temperature = 373 K, and molar ratio of glycerol / ammonium acetate / HAc = 1 / 3.58 / 15.4).

Figure S2

Fig. S2. Comparison between the production of 3-picoline using acetic acid and propionic acid as both the solvent and catalyst under microwave irradiation, respectively. (Reaction conditions: reaction temperature = 373 K, reaction time = 20 min, and molar ratio of glycerol / ammonium acetate / (acetic acid or propionic acid) = 1/3.58/15.4).

Figure S3

Fig. S3. Effect of various organic acid solid catalysts on the production of 3-picoline under microwave irradiation. 0 #: Blank, 3 #: stearic acid, 4 #: oxalic acid, 5 #: adipic acid, 6 #: sulfosalicylic acid, 7 #: edetic acid. (Reaction conditions: reaction temperature = 373 K, reaction time = 20 min, and mass ratio of glycerol/ammonium acetate/acetic acid/solid catalyst = 1/3/10/0.2).

Figure S4

Fig. S4. Effect of various ion-exchanged resin on the production of 3picoline under microwave irradiation. 0 #: Blank, 8 #: D 402 Na, 9 #: D 113 III, 10 #: D 001 H. (Reaction conditions: reaction temperature = 373 K, reaction time = 20 min, and mass ratio of glycerol/ammonium acetate/acetic acid/solid catalyst = 1/3/10/0.2).

Figure S5

Fig. S5. Effect of KF and MgF₂ on the production of 3-picoline under microwave irradiation. 0 #: Blank, 11 #: KF, 12 #: MgF₂. (Reaction conditions: reaction temperature = 373 K, reaction time = 20 min, and mass ratio of glycerol/ammonium acetate/acetic acid/solid catalyst = 1/3/10/0.2).

Tables

Table S1

The textural and acid properties of various catalysts*

Catalysts	S _{BET} (m²/g)	S _{micro} (m²/g)	S_{ext} (m ² /g)	$T_{m,i}{}^a$ and $A_i{}^b$ for various desorption peaks				
				T _{m,1}	A_1	$T_{m,2}$	A_2	A_{total}^{c}
				(°C)	(mmol/g)	(°C)	(mmol/g)	(mmol/g)
HZSM-5	336	304	32	165	0.84	360	1.03	1.87

 $^*S_{BET}$, S_{micro} and S_{ext} refer to specific surface area, micropore surface area and external surface area, respectively, and $S_{BET} = S_{micro} + S_{ext}$.

 ${}^{a}T_{m,i}$ refers to the temperature at the maximum of desorption peak i;

 ${}^{b}A_{i}$ refers to the integral area of desorption peak i and it means also the concentration of acid site corresponding to desorption peak i;

^c $A_{total} = \Sigma A_i$.