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Instrumentation

Transmission Electron Microscopy (TEM) and High Resolution TEM (HRTEM) were 
performed with JEOL JEM2010 electron microscope operating at 200 kV. Thermogravimetric 
Analysis (TGA) was analysed on Perkin-Elmer instrument, Pyris Diamond TG/DTA with 
Al2O3 crucible. Powdered X-ray Diffraction (PXRD) has been carried out by Bruker APEX-2 
diffractometer. The X-ray Photoelectron Spectroscopy (XPS) was measured by Specs 
(German). Fourier Transform Infra Red spectra (FT-IR) were carried out with a Perkin-Elmer 
FT-IR spectrophotometer RXI. Energy Dispersive X-ray (EDX) was measured with FEI 
TECNAI-G2-20S-TWIN (USA).  Photoluminescence (PL) spectra were recorded by F-7000 
FL Spectrophotometer. BET surface area and N2 sorption isotherms (77K) were measured by 
Quantachrome Autosorb-1 instrument. FESEM image and elemental mapping were done with 
Supra Carl Zeiss 40 instrument.
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Scheme 1 Schematic representation for the formation of Ag/SnO2/NiO heteronanostructure 
from the NCP precursor.
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Figure S1: TGA analysis of the Sn NCP and Sn-Ni NCP under N2 atmosphere at the heating rate 10⁰ 
C /min.

TGA shows a minor weight loss at around 125-175 ⁰C  due to loss of water molecules from the 

NCPs, and a major weight losses at around 300 ⁰C and 350 ⁰C due to presence of terephthalate 

organic ligands in the NCPs. It also informs that thermal stability of the mixed-metal Sn-Ni 

NCP (~40 % weight loss) is greater than single metal NCP (~55% weight loss). 
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Figure S2: FT-IR analysis of the a) Sn NCP and Sn-Ni NCP, b) SnO2 and SnO2-NiO obtained from 
corresponding Sn-NCP and Sn-Ni NCP after calcinations at 450 ºC; c) PXRD pattern of the Sn-Ni 
NCP and d) PXRD of the Sn-NCP.

The CO stretching frequency shifted to 1588 cm-1 from 1686 cm-1 for the un-coordinated ligand 1,4-

H2BDC after the formation of coordination polymers with Sn2+/Ni+2 ions.1 A strong and broad peak at 

around 3384 cm-1 is observed typical for H2O molecules with hydrogen bonds, indicating that H2O 

molecules participate in the coordination of Sn+2/Ni+2 in the NCP structures. The peak at 1386 cm-1 in 

the Sn-Ni NCPs is due to carboxylate stretching frequencies of the ligand, BDC2-.2 Interestingly, all the 

aromatic peaks are vanished after calcinations of the NCPs at 450 ⁰C for 90 min suggesting the 

formation of metal oxide hetero-nanostructures.  

The PXRD of the NCPs reveals sharp peaks, and hence, indicates crystalline nature of the NCPs (c-d). 

The PXRD pattern also indicates that the two NCP materials are not iso-structural.

1. S. Jung, W.Cho, H. J.Lee and M.  Oh, Angew. Chem. Int. Ed. 2009, 48, 1459-1462.

2. M. Rakibuddin and R. Ananthakrishnan, RSC Adv. 2015, 5, 68117.
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Figure S3: EDX elemental analysis of the a) Sn NCP and b) Sn-Ni NCP.

EDX shows the presence of C, N, O, Sn and Ni in the NCP structures. The presence of Cu is due to Cu 

grid used during TEM sample preparation.
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                      FigureS4. TEM image of the porous a-b) Sn NCP and c-d) Sn-Ni mixed metal NCP.

TEM image of the Sn NCP and Sn-Ni NCPs reveals the formation of aggregated lump type porous 
particles.
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Figure S5. Plot of [F(R) hν]2 versus photon energy (hν) for determination of band gap of the as-
synthesized pure SnO2.
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                      FigureS1. TEM image of the a-b) Sn NCP and c-d) Sn-Ni mixes metal NCP.

  FigureS6. TEM image of the a) SnO2, b) SnO2/NiO, c) only NiO in the SnO2/NiO and d) Ag/Sn-
SnO2/NiO obtained after calcinations of the corresponding NCPs.
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Figure S7. Energy dispersive X-ray analysis of the a) SnO2 and b) SnO2/NiO heteronanostructure.
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FigureS8. High resolution XPS of the O 1s in the Ag/SnO2/NiO heteronanostructure.
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Figure S9. ln C0/Ct  vs Time plot for the reduction of Cr (VI) in presence of the different catalyst under 
visible light.
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Figure S10. a) Dark adsorption Kinetic plots (Ct/C0 vs Time) and b) ln C0/Ct vs Time plot of Cr(VI) 
solution in the presence of  Ag/SnO2/NiO .
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Figure S11. UV-Visible absorption spectra for reduction of Cr(VI) at the catalyst dose a) 0.25 g/L, b) 
0.5 g/L and c) 0.75 g/L of the Ag/SnO2/NiO  catalyst [Cr(VI)]=20 mg/L, pH=2.0].
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Figure S12. UV-Visible absorption spectra for reduction of Cr(VI) at different pH  a) pH 4.0, b) pH 
6.0 c) 8.0 and d) pH 10.0 in presence of the Ag/SnO2/NiO catalyst  [Cr(VI)]=20 mg/L, [catalyst]= 1.0 
g/L].



15

Figure S13. a) PXRD pattern of the reused catalyst (after 5th cycle) after photo-reduction of Cr(VI) 
and b)  TEM image of the Ag/SnO2/NiO catalyst after 5th cycle of the photoreduction.
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Figure S14. PXRD pattern of the sediment after heating at 400 ºC for 1 h.


