Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic supplementary information (ESI)

Alkyl groups-directed assembly of coordination polymers based on bis-(4-imidazol-1-yl-

phenyl)-amine and their photocatalytic properties

Hong-Jian Cheng*, Ya-Li Shen, Yi-Feng Lu, Ji Ma, Hong-Wei Ji, Wen-Yu Yin, Xiao-Yan Tang, Yun-Sheng Ma and Rong-Xin Yuan*

School of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Insititute of Technology, Changshu, Jiangsu, 215500, P. R. China

Contents

Fig. S1 (a)	Powder X	(RD patte	erns of bi	ulk samp	ole of	1 (up) and	d Rietveld r	efine	ment of	mod	el determi	ned b	by single of	crystal
diffraction	(down);	(b) Powd	ler XRD p	patterns	of bu	ulk sample	of 2 (up) a	nd R	ietveld r	efine	ment of m	odel	determir	ned by
single crys	stal diffra	ction (do	wn); (c)	Powder	XRD	patterns of	of bulk san	nple (of 3 (up)	and	Rietveld r	efine	ment of	model
determine	d by sin	gle cryst	al diffrao	ction (d	own);	; (d) Pow	der XRD p	atter	ns of bu	ılk sa	ample of 4	i (up) and Ri	etveld
refinemen	t of mode	el determ	nined by	single cr	ystal	diffractior	n (down)····					•••••		·····S3
Fig. S2. (a)) FTIR spe	ectrum fo	or compo	ound 1 .	(b) FT	TR spectru	im for com	poun	nd 2 . (c) I	FTIR	spectrum f	or co	ompound	3 . (d)
FTIR			sp	pectrum				f	for				com	pound
4					••••					St	5			
Table	S1.	Select	ed	bond	ŀ	engths	(Å)	and	d a	ngles	6 (°)		for	1-4 ^{<i>a</i>} .
			•••••		•••••	St	5							
Table		S2.		Hydro	ogen-	bonding		int	eraction	S		in		1-
4					•••••			·S6						
Fig. S3 The	e UV-vis a	bsorptio	n spectra	a for 1–4	in th	e solid sta	te at room	temp	perature.					·····\$8
Fig. S4 UV	'-Vis abso	rption sp	pectra of	a MB s	olutio	on degrad	ed without	cata	lysts unc	ler U	V irradiati	on at	t differen	t time
intervals					•••••		••••••						•••••	·····S8
Fig. S5 U	V-Vis abs	sorption	spectra	of the	MB	solutions	degraded	by :	1 under	UV	irradiatior	n at	different	: time
intervals					•••••		••••••						•••••	S9
Fig. S6 U	V-Vis abs	sorption	spectra	of the	MB	solutions	degraded	by 3	3 under	UV	irradiatior	n at	different	: time
intervals														S9
Fig. S7 U	V-Vis abs	sorption	spectra	of the	MB	solutions	degraded	by 4	4 under	UV	irradiatior	n at	different	: time
intervals														…S10

Fig. S8. (a) The TGA curves for 1; (b) The TGA curves for 2; (c) The TGA curves for 3 and (d) The TGA curves for 4......S11

Fig. S1. (a) Powder XRD patterns of bulk sample of **1** (up) and Rietveld refinement of model determined by single crystal diffraction (down); (b) Powder XRD patterns of bulk sample of **2** (up) and Rietveld refinement of model determined by single crystal diffraction (down). (c) Powder XRD patterns of bulk sample of **3** (up) and Rietveld refinement of model determined by single crystal diffraction (down); (d) Powder XRD patterns of bulk sample of **4** (up) and Rietveld refinement of model determined by single crystal diffraction (down); (d) Powder XRD patterns of bulk sample of **4** (up) and Rietveld refinement of model determined by single crystal diffraction (down); (d) Powder XRD patterns of bulk sample of **4** (up)

Figure S2. (a) FTIR spectraum for compound **1**. (b) FTIR spectraum for compound **2**. (c) FTIR spectraum for compound **3**. (d) FTIR spectraum for compound **4**.

Table S1 Selected bond lengths ((Å) and an	gles (°) for 1-4 ^a
----------------------------------	------------	-------------------------------

2.038(9)	Zn(1)-N(5A)	2.008(9)
2.003(15)	Zn(2)-N(6)	2.029(9)
1.953(7)	Zn(1)-O(5)	1.990(7)
1.944(7)	Zn(2)-O(3)	1.983(7)
104.7(3)	O(1)-Zn(1)-N(5A)	132.0(4)
106.9(4)	O(1)-Zn(1)-N(1)	102.8(4)
102.1(4)	N(5A)-Zn(1)-N(1)	104.9(4)
124.8(4)	O(7C)-Zn(2)-O(3)	101.9(3))
111.2(5)	O(7C)-Zn(2)-N(6)	105.5(4)
108.5(4)	O(3)-Zn(2)-N(6)	101.8(4)
2.281(4)	Cd(2)-N(5)	2.233(4)
2.312(3)	Cd(1)-O(9)	2.330(3)
2.331(3)	Cd(1)-O(8B)	2.335(3)
2.516(3)	Cd(1)-O(1)	2.590(3)
2.216(3)	Cd(2)-O(12)	2.385(3)
2.347(4)	Cd(2)-O(3A)	2.501(3)
2.394(3)		
88.25(12)	N(1)-Cd(1)-O(9)	172.84(13)
84.76(10)	N(1)-Cd(1)-O(10)	94.25(14)
136.26(11)	O(9)-Cd(1)-O(10)	91.89(12)
96.83(14)	O(2)-Cd(1)-O(8B)	139.12(11)
	2.038(9) 2.003(15) 1.953(7) 1.944(7) 104.7(3) 106.9(4) 102.1(4) 124.8(4) 111.2(5) 108.5(4) 2.281(4) 2.312(3) 2.331(3) 2.516(3) 2.216(3) 2.347(4) 2.394(3) 88.25(12) 84.76(10) 136.26(11) 96.83(14)	2.038(9)Zn(1)-N(5A)2.003(15)Zn(2)-N(6)1.953(7)Zn(1)-O(5)1.944(7)Zn(2)-O(3)104.7(3)O(1)-Zn(1)-N(5A)106.9(4)O(1)-Zn(1)-N(1)102.1(4)N(5A)-Zn(1)-N(1)124.8(4)O(7C)-Zn(2)-O(3)111.2(5)O(7C)-Zn(2)-N(6)108.5(4)O(3)-Zn(2)-N(6)2.281(4)Cd(2)-N(5)2.312(3)Cd(1)-O(9)2.331(3)Cd(1)-O(1)2.216(3)Cd(2)-O(12)2.347(4)Cd(2)-O(12)2.394(3)X88.25(12)N(1)-Cd(1)-O(9)84.76(10)N(1)-Cd(1)-O(10)136.26(11)O(9)-Cd(1)-O(10)96.83(14)O(2)-Cd(1)-O(8B)

O(9)-Cd(1)-O(8B)	87.47(11)	O(10)-Cd(1)-O(8B)	83.98(12)
N(1)-Cd(1)-O(7B)	89.93(14)	O(2)-Cd(1)-O(7B)	85.90(9)
O(9)-Cd(1)-O(7B)	88.01(11)	O(10)-Cd(1)-O(7B)	137.67(11)
O(8B)-Cd(1)-O(7B)	53.71(11)	N(1)-Cd(1)-O(1)	92.05(13)
O(2)-Cd(1)-O(1)	52.71(10)	O(9)-Cd(1)-O(1)	84.98(10)
O(10)-Cd(1)-O(1)	83.55(11)	O(8B)-Cd(1)-O(1)	165.18(12)
O(7B)-Cd(1)-O(1)	138.45(9)	O(5)-Cd(2)-N(5)	136.46(13)
O(5)-Cd(2)-O(4A)	82.65(11)	N(5)-Cd(2)-O(4A)	140.75(13)
O(5)-Cd(2)-O(12)	85.43(11)	N(5)-Cd(2)-O(12)	88.98(12)
O(4A)-Cd(2)-O(12)	91.68(12)	O(5)-Cd(2)-O(11)	92.99(11)
N(5)-Cd(2)-O(11)	86.90(13)	O(4A)-Cd(2)-O(11)	95.71(13)
O(12)-Cd(2)-O(11)	172.18(12)	O(5)-Cd(2)-O(3A)	134.68(12)
N(5)-Cd(2)-O(3A)	88.38(13)	O(4A)-Cd(2)-O(3A)	53.69(11)
O(12)-Cd(2)-O(3A)	105.24(10)	O(11)-Cd(2)-O(3A)	81.30(11)
Complex 3			
Zn(1)-N(1)	1.993(2)	Zn(1)-N(5A)	1.982(3)
Zn(1)-O(1)	1.942(2)	Zn(1)-O(3B)	1.954(2)
O(1)-Zn(1)-O(3B)	102.27(10)	O(1)-Zn(1)-N(5A)	117.30(12)
O(3B)-Zn(1)-N(5A)	109.52(12)	O(1)-Zn(1)-N(1)	100.00(10)
O(3B)-Zn(1)-N(1)	114.82(10)	N(5A)-Zn(1)-N(1)	112.48(11)
Complex 4			
Cd(1)-N(1)	2.358(4)	Cd(1)-N(5A)	2.286(3)
Cd(1)-O(1)	2.365(3)	Cd(1)-O(4B)	2.339(3)
Cd(1)-O(2C)	2.363(3)	Cd(1)-O(3B)	2.534(3)
Cd(1)-O(2)	2.635(3)		
N(5A)-Cd(1)-O(4B)	145.35(11)	N(5A)-Cd(1)-N(1)	90.12(12)
O(4B)-Cd(1)-N(1)	86.63(12)	N(5A)-Cd(1)-O(2C)	88.57(11)
O(4B)-Cd(1)-O(2C)	93.54(11)	N(1)-Cd(1)-O(2C)	177.93(11)
N(5A)-Cd(1)-O(1)	130.61(12)	O(4B)-Cd(1)-O(1)	82.70(10)
N(1)-Cd(1)-O(1)	79.99(12)	O(2C)-Cd(1)-O(1)	102.07(11)
N(5A)-Cd(1)-O(3B)	91.63(11)	O(4B)-Cd(1)-O(3B)	53.73(10)
O(1)-Cd(1)-O(3B)	134.23(10)	N(5A)-Cd(1)-O(2)	83.69(11)
O(4B)-Cd(1)-O(2)	130.71(9)	N(1)-Cd(1)-O(2)	101.94(12)
O(2C)-Cd(1)-O(2)	79.51(10)	O(1)-Cd(1)-O(2)	52.29(9)
O(3B)-Cd(1)-O(2)	172.59(9)	O(2C)-Cd(1)-O(3B)	94.68(10)
N(1)-Cd(1)-O(3B)	83.76(12)		

^{*a*} Symmetry codes: (A) x + 1, y + 1, z; (B) x + 1, y - 1, z; (C) x + 1/2, -y, z + 1/2 for **1**. (A) -x + 3, -y + 1, -z + 2; (B) -x + 2, -y, -z + 2 for **2**. (A) x - 1, y + 1, z; (B) -x + 1, y + 1/2, -z + 3/2. for **3**. (A) x, y + 1, z; (B) -x + 1, -y + 1, -z + 1; (C) x - 1, y, z for **4**.

 Table S2.
 Hydrogen-bonding interactions in 1-4.

Interaction	D-	-Η [Å] Η·	··A [Å] D···A	[Å] Angle (D–I	H…A) [°]
Complex 1					
N3–H3A…O5 ^a	0.86	2.52	3.36(2)	164	
N8–H8A…O3 ^b	0.86	2.43	3.27(2)	165.0	
Symmetry codes: a	, x – 1, y, z; b	, x, y + 1, z	2.		
Complex 2					
09–H9B…O4 ^a	1.07	1.76	2.811(4)	165.03	
09–H9C…O5 ^b	0.82	1.97	2.781(4)	170.3	
010-H10A…01 ^c	0.82	1.96	2.759(4)	164.8	
O10-H10B…O13 ^d	1.04	2.13	3.151(4)	165.3	
011–H11B…013 ^e	0.90	2.13	3.017(4)	167.3	
011–H11C…O6 ^e	0.82	1.97	2.759(5)	162.6	
012–H12B…O2 ^f	0.82	1.92	2.738(4)	179.6	
012–H12C…07 ^g	0.93	1.88	2.807(4)	171.1	
013-H13A…08	0.85	1.85	2.663(4)	159.6	
O13–H13B…O3 ^h	0.85	1.95	2.740(4)	153.2	
N3–H3A…O13 ⁱ	0.86 2.2	110 2.9	943(5)	165.2	
Symmetry codes: a	, – x + 2, – y -	+ 2, <i>– z</i> + 2	2; b, x – 1, y +	1, z ; c, – x + 2	, – y + 1 , – z + 2;
y, -z + 2; f, x + 1, y	– 1, z; g, – x -	+ 3, – y – 1	L, – z + 2; h, x	, y – 1, z; i, – x -	+ 5/2, – y + 1/2, –
Complex 3					
05–H5B…O3 ^a	0.85(6)	2.18	3.027(4)	179.1	
O5-H5C…O6	0.85	1.96	2.772(5)	160.1	
O6–H6B…O2 ^b	0.85	1.95	2.784(4)	168.0	
06–H6C…O3 ^c	0.86	2.06	2.913(4)	175.8	
N3-H3A…O5 ^e	0.86	1.90	2.713(9)	157.9	
Symmetry codes: a	, – <i>x</i> + 1, – <i>y</i> +	+ 1, – <i>z</i> + 1	; b, - x + 1, -	y + 2, - z + 1 ; a	c, x, – y + 3/2, z –
Complex 4					
05-H5C…01	0.85	2.14	2.922(6)	153.7	
05–H5D…O4 ^a	0.85 1.9	96 2.8	804(6)	173.5	
N3–H3A…O3b ^b	0.86	2.18	2.934(5)	145.9	
Symmetry codes: a	, x – 1, y, z; b	, – <i>x</i> + 1, <i>y</i>	r – 1/2, – z + 1	/2.	

Fig. S3 The UV-vis absorption spectra for 1-4 in the solid state at room temperature

Fig. S4 UV-Vis absorption spectra of a MB solution degraded without catalysts under UV irradiation at different time

intervals

Fig. S5 UV-Vis absorption spectra of the MB solutions degraded by 1 under UV irradiation at different time intervals.

Fig. S6 UV-Vis absorption spectra of the MB solutions degraded by 3 under UV irradiation at different time intervals.

Fig. S7 UV-Vis absorption spectra of the MB solutions degraded by 4 under UV irradiation at different time intervals.

Figure S8. (a) The TGA curves for 1; (b) The TGA curves for 2; (c) The TGA curves for 3 and (d) The TGA curves for 4.