Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supporting Information

Cholesterol appended bis-1,2,3-triazoles as simple supramolecular gelators for naked eye detection of Ag⁺, Cu²⁺ and Hg²⁺ ions

Kumaresh Ghosh^{*}, Atanu Panja and Santanu Panja

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in

Table S1. Results of gelation test for 1-5.

Solvents	1	2	3	4	5
CHCl ₃	S	S	S	S	S
2% CH ₃ OH in CHCl ₃	S	S	S	S	S
$CHCl_3 : CH_3OH(1:1, v/v)$	Р	Р	Р	PG	S
CHCl ₃ : CH ₃ OH (2:1, v/v)	G	G	G	S	S
CHCl ₃ : CH ₃ OH (3:1, v/v)	S	S	S	S	S
CHCl ₃ : Pet ether $(1:1, v/v)$	PS	PS	PS	S	S
CH ₃ COCH ₃	Ι	Ι	Ι	PS	S
DMF	PG	PG	PG	PS	S
$DMF:H_2O$ (1:1, v/v)	Р	Р	Р	Р	Р
CH ₃ CN	Ι	Ι	Ι	PS	S
$CH_3CN : CHCl_3(1:1, v/v)$	S	S	S	S	S
CH ₃ OH	Ι	Ι	PS	PS	PS
CH ₃ OH :H ₂ O (1:1, v/v)	Ι	Ι	Ι	Ι	Р
DMSO	Ι	Ι	PS	PS	S
1% DMSO in CH ₃ CN	Ι	Ι	Ι	PS	S
Diethyl ether	Ι	Ι	PS	PS	S
Cyclohexane	Ι	Ι	Ι	PS	S
S = solution, G = gel (minimum gelation concentration; 1 = 14.6 mg/mL, 2 = 13.5 mg/mL, 3 = 12.2 mg/mL) I=					
insoluble, PG = partial gelation, PS = partial soluble, P =					
precipitation.					

Fig. S1. Partial FTIR spectra of (a) 1 (amorphous) and (b) 1 in gel state.

Fig. S2. Partial FTIR spectra of (a) 2 (amorphous) and (b) 2 in gel state.

Fig. S3. Partial FTIR spectra of (a) 3 (amorphous) and (b) 3 in gel state.

Fig. S4. Pictorial representation of the thermo reversibility of the CHCl₃:CH₃OH (2:1, v/v) gels of (a) 1, (b) 2 and (c) 3.

Fig. S5. Pictorial representation of Ag^+ (c = 0.2 M, 5 equiv.) induced broken gels of **2** [15 mg/ mL in CHCl₃: MeOH (2:1, v/v)] upon addition of 1-Dodecanethiol (in excess amounts) after 4h.

Fig. S6. Chemical responsiveness of the gel of 2 [15 mg/ mL in CHCl₃: MeOH (2:1, v/v)] on successive addition of (a) Cu^{2+} (c = 0.2 M, 5 equiv.) and 1-dodecanethiol (c = 0.2 M, 10 equiv); (b) Hg^{2+} (c = 0.2 M, 5 equiv.) and 1-dodecanethiol (c = 0.2 M, 10 equiv) and (c) Ag⁺ (c = 0.2 M, 5 equiv.) and TBACl (c = 0.2 M, 5 equiv).

 $Pb(II) \ Mg(II) \ Zn(II) \ Cd(II) \ Ni(II) \ Fe(II) \ Co(II) \ Ag(I) \ Hg(II) \ Cu(II)$

Fig. S7. Photograph showing the changes in the gel state of 3 (15 mg/mL) when the gels were prepared with 5 equiv. amounts of different metal ions [c = 0.2 M in CHCl₃:CH₃OH (2:1, v/v) as perchlorate salt] in CHCl₃:CH₃OH (2:1, v/v). Similar observation was obtained when the CHCl₃:CH₃OH (2:1, v/v) gels of 3 were kept in contact with 0.5 mL of different metal solution [c = 0.2 M in CHCl₃:CH₃OH (2:1, v/v)].

Fig. S8. Chemical responsiveness of the gel of **3** [15 mg/ mL in CHCl₃: MeOH (2:1, v/v)] on successive addition of (a) Cu^{2+} (c = 0.2 M, 5 equiv.) and 1-dodecanethiol (c = 0.2 M, 10 equiv); (b) Hg²⁺ (c = 0.2 M, 5 equiv.) and 1-dodecanethiol (c = 0.2 M, 10 equiv) and (c) Ag⁺ (c = 0.2 M, 5 equiv.) and TBACl (c = 0.2 M, 5 equiv.) and 1-dodecanethiol (in excess amounts).

Fig. S9. (A) Pictorial representations of the phase changes of the gels of (a) **1**; (b) **2** and (c) **3** [15 mg/ mL in CHCl₃: MeOH (2:1, v/v)] in presence of 1 equiv. amounts of Cu^{2+} (c = 0.2 M) with time. (B) Pictorial representations of the phase changes of the gels of (d) **2** and (e) **3** [15 mg/ mL in CHCl₃: MeOH (2:1, v/v)] in presence of 1 equiv. amount of respective metal ions (c = 0.2 M) with time.

Change in emission of 3 in CH₃CN: CHCl₃(4:1, v/v).

Fig. S10. Change in emission of **3** ($c = 2.0 \times 10^{-5}$ M) upon addition of 5 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺, (h) Hg²⁺, (i) Ag⁺, (j) Cu²⁺ ($c = 8.0 \times 10^{-4}$ M) in CH₃CN: CHCl₃ (4:1, v/v).

Job plot

Fig. S11. Job plot of receptor **3** ($c = 2.0 \times 10^{-5} \text{ M}$) with (a) Hg²⁺, (b) Ag⁺ and (c) Cu²⁺ from fluorescence.

Fig. S12. Job plot of receptor **3** ($c = 2.0 \times 10^{-5} \text{ M}$) with (a) Hg²⁺, (b) Ag⁺ and (c) Cu²⁺ from UV.

Change in absorbance of 3 in CH₃CN: CHCl₃ (4:1, v/v).

Fig. S13. Change in absorbance of **3** ($c = 2.0 \times 10^{-5}$ M) upon addition of 5 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺, (h) Hg²⁺, (i) Ag⁺, (j) Cu²⁺ ($c = 8.0 \times 10^{-4}$ M) in CH₃CN: CHCl₃ (4:1, v/v).

Fig. S14. Change in absorbance of **1** ($c = 2.0 \times 10^{-5}$ M) upon addition of 5 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺, (h) Hg²⁺, (i) Ag⁺, (j) Cu²⁺ ($c = 8.0 \times 10^{-4}$ M) in CH₃CN: CHCl₃ (4:1, v/v).

Change in absorbance of 2 in CH₃CN: CHCl₃(4:1, v/v)

Fig. S15. Change in absorbance of **2** ($c = 2.0 \times 10^{-5}$ M) upon addition of 5 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺, (h) Hg²⁺, (i) Ag⁺, (j) Cu²⁺ ($c = 8.0 \times 10^{-4}$ M) in CH₃CN: CHCl₃ (4:1, v/v).

Non liner binding constant curve from fluorescence

Fig. S16. Non liner binding constant curve for **3** ($c = 2.0 \times 10^{-5} \text{ M}$) with (a) Hg²⁺, (b) Ag⁺ and (c) Cu²⁺ ($c = 8.0 \times 10^{-4} \text{ M}$) in CH₃CN: CHCl₃ (4:1, v/v) from fluorescence.

Non liner binding constant curve from UV

Fig. S17. Non liner binding constant curve for **3** ($c = 2.0 \times 10^{-5}$ M) with (a) Hg²⁺, (b) Ag⁺ and (c) Cu²⁺ ($c = 8.0 \times 10^{-4}$ M) in CH₃CN: CHCl₃ (4:1, v/v) from UV.

Job plot

Fig. S18. Job plot of receptor $\mathbf{1}$ ($c = 2.0 \times 10^{-5} \text{ M}$) with Cu²⁺ from UV.

Fig. S19. Non liner binding constant curve for **1** ($c = 2.0 \times 10^{-5}$ M) with Cu²⁺ ($c = 8.0 \times 10^{-4}$ M) in CH₃CN: CHCl₃(4:1, v/v) from UV.

Fig. S20. Job plot of receptor 2 ($c = 2.0 \times 10^{-5} \text{ M}$) with (a) Hg²⁺, (b) Ag⁺ and (c) Cu²⁺ from UV.

Non liner binding constant curve

Fig. S21. Non liner binding constant curve for **2** ($c = 2.0 \times 10^{-5}$ M) with (a) Hg²⁺, (b) Ag⁺ and (c) Cu²⁺ ($c = 8.0 \times 10^{-4}$ M) in CH₃CN: CHCl₃ (4:1, v/v) from UV.

¹H NMR change with metal ions

Fig. S23. Partial ¹H NMR (400 MHz, CDCl₃) of (a) compound **3** (c = 4.10 x 10^{-3} M),(b) **3** with Ag⁺ (1:1), (c) **3** with Hg²⁺ (1:1) and (d) **3** with Cu²⁺ (1:1).

-10 pps 9.0 198 180 170 160

Mass spectrum of 1.

9.0 12.0

Mass spectrum of 2.

¹³C NMR (CDCl₃, 100 MHz)

Mass spectrum of 3.

