Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Off-on fluorometric detection of cyanide anion in aqueous mixture by indane-based receptor

Yasuhiro Shiraishi,^{*a,b**} Masaya Nakamura,^{*a*} Tetsuri Kogure^{*a*} and Takayuki Hirai^{*a*}

^a Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan ^b PRESTO, JST, Saitama 332-0012, Japan

shiraish@cheng.es.osaka-u.ac.jp

Electronic Supplementary Information (ESI†)

CONTENTS

Page

	-
Table S1 TD-DFT calculation results for 1'	2
Table S2 TD-DFT calculation results for 1'-CN ⁻	3
Fig. S1 ¹ H NMR chart of 1	4
Fig. S2 ¹³ C NMR chart of 1	5
Fig. S3 FAB-MS chart of 1	6
Fig. S4 Kinetic fluorescence data for the reaction of 1 with CN ⁻	7
Fig. S5 FAB-MS chart for the solution containing 1 and CN ⁻	8
Fig. S6 $^{1}\text{H}^{-1}\text{H}$ COSY chart of 1	9
Fig. S7 $^{1}H^{-1}H$ COSY chart of the 1:1 association species for 1 and CN ⁻	10
Fig. S8 Fluorescence spectra of 1 when excited at ICT band	11
Fig. S9 Fluorescence spectra of 1 at various pH	11
Cartesian coordinates for respective compounds	12

	main orbital transition (CIC ^a)	$E (eV) [\lambda (nm)]$	f
	HOMO-2 \rightarrow LUMO (-0.10532)		
$S_0 \rightarrow S_1$	$HOMO-1 \rightarrow LUMO (-0.10560)$	2.3937 [517.97]	0.3161
	$HOMO \rightarrow LUMO (0.63475)$		
$S_0 \rightarrow S_2$	$HOMO \rightarrow LUMO+1 (0.68631)$	2.5567 [484.93]	0.0168
	HOMO-2 \rightarrow LUMO (0.10030)		
	HOMO–1 → LUMO (0.62943)		
$S_0 \rightarrow S_3$	HOMO-1 \rightarrow LUMO+2 (-0.12951)	2.8788 [430.68]	0.0369
	HOMO \rightarrow LUMO (0.10896)		
	HOMO \rightarrow LUMO+2 (0.13600)		
	HOMO-4 \rightarrow LUMO+1 (0.13751)		
0.0	HOMO–3 \rightarrow LUMO (0.57462)	2 1014 [200 77]	0.0172
$S_0 \rightarrow S_4$	HOMO-3 \rightarrow LUMO+1 (-0.15872)	3.1014 [399.77]	0.0173
	HOMO-2 \rightarrow LUMO (-0.29719)		
	HOMO–4 \rightarrow LUMO (0.18076)		
	HOMO-3 \rightarrow LUMO (0.17857)		
$S_0 \rightarrow S_5$	HOMO-3 \rightarrow LUMO+1 (0.53677)	3.1632 [391.96]	0.0045
	HOMO-2 \rightarrow LUMO+1 (-0.17763)		
	HOMO-1 \rightarrow LUMO+1 (0.26800)		
	$HOMO-3 \rightarrow LUMO+1 (0.11952)$		
0.0	HOMO-2 \rightarrow LUMO (-0.10266)	2 2022 [275 24]	0 1570
$S_0 \rightarrow S_6$	HOMO-1 \rightarrow LUMO (-0.12880)	3.3032 [3/3.34]	0.15/9
	HOMO \rightarrow LUMO+2 (0.60116)		

Table S1 Calculated excitation energy (*E*), wavelength (λ), and oscillator strength (*f*) for low-laying singlet state (S_n) of **1**'.

^a CI expansion coefficients for the main orbital transitions.

	Main orbital transition (CIC ^a)	$E(eV)[\lambda(nm)]$	f	
	HOMO-1 \rightarrow LUMO+1 (-0.11672)			
$S \rightarrow S$	HOMO \rightarrow LUMO (0.15723)	2 5709 [490 50]	0.005	
$S_0 > S_1$	HOMO \rightarrow LUMO+1 (0.64660)	2.3798 [480.39]	0.005	
	HOMO \rightarrow LUMO+2 (-0.15422)			
SS	HOMO \rightarrow LUMO+1 (0.16799)	2 6214 [472 07]	0.0104	
$5_0 - 5_2$	HOMO \rightarrow LUMO+2 (0.63442)	2.0214 [472.97]	0.0104	
	HOMO-1 \rightarrow LUMO (0.51780)			
	HOMO-1 \rightarrow LUMO+1 (-0.10778)	2 7175 [456 24]	0.0014	
$S_0 \rightarrow S_3$	HOMO \rightarrow LUMO (0.45136)	2./1/3 [430.24]	0.0014	
	HOMO \rightarrow LUMO+1 (-0.11641)			
	HOMO-1 \rightarrow LUMO (-0.45304)			
	HOMO-1 \rightarrow LUMO+1 (0.10956)	2 8117 [440.06]	0.0003	
$5_0 - 5_4$	HOMO \rightarrow LUMO (0.51415)	2.8117 [440.90]	0.0003	
	HOMO \rightarrow LUMO+1 (-0.12682)			
$S_0 \rightarrow S_5$	HOMO \rightarrow LUMO+3 (0.70130)	2.8645 [432.83]	0.0005	
	HOMO-1 \rightarrow LUMO+1 (-0.18181)	2 886 [420 60]	0.0047	
$3_0 - 3_6$	HOMO-1 \rightarrow LUMO+2 (0.67092)	2.880 [429.00]	0.0047	
а , с	HOMO-2 \rightarrow LUMO+1 (-0.14029)	2 0426 [407 26]	0.0002	
$S_0 \rightarrow S_7$	HOMO-2 \rightarrow LUMO+2 (0.66980)	5.0430 [407.30]	0.0002	
	HOMO-1 \rightarrow LUMO (0.12438)			
$S_0 \rightarrow S_8$	HOMO-1 \rightarrow LUMO+1 (0.56699)	3.0748 [403.22]	0.2832	
	HOMO-1 \rightarrow LUMO+2 (0.18396)			

Table S2 Calculated excitation energy (*E*), wavelength (λ), and oscillator strength (*f*) for low-laying singlet state (S_n) of **1'**-CN⁻.

^a CI expansion coefficients for the main orbital transitions.

Fig. S1 ¹H NMR chart of **1** (DMSO- d_6 , 400 MHz).

-	gate																		
-1.als	decoupled 2:08:37			MHZ	KHz	Hz		Hz		sec	sec	usec		U		udd	Hz		
Coul_Carbon-1	single puise 2015-02-06 12	13C	carbon.jxp	100.53	5.35	5.86	26214	25125.63	1024	1.0433	2.0000	2.87	1H	30.0	DMSO	0.00	0.10	50	
DFILE	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	

Fig. S2 13 C NMR chart of **1** (DMSO- d_6 , 100 MHz).

Fig. S3 FAB-MS chart of **1**. The peaks marked with asterisks are assigned to the multimers or the fragment peaks for 3-nitrobenzyl alcohol used as a matrix.

Fig. S4 Kinetic fluorescence data for 1 obtained after addition of 10 equiv of CN⁻.

Fig. S5 FAB-MS chart for the solution containing 1 and CN^{-} .

Fig. S6 ${}^{1}\text{H}{-}^{1}\text{H}$ COSY chart of **1** (DMSO-*d*₆, 400 MHz). Blue circles indicate the observed cross peaks. The texts above the circle indicate the coupling protons.

Fig. S7 ${}^{1}\text{H}{-}^{1}\text{H}$ COSY chart of 1:1 association species for 1 and CN⁻ (DMSO-*d*₆, 400 MHz). Blue and yellow green circles indicate the observed cross peaks of 1 and *n*-Bu₄N⁺, respectively. The texts above the circle indicate the coupling protons.

Fig. S8 Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) of **1** (20 µM) measured without or with 10 equiv of CN⁻ in a buffered water/MeCN mixture (1/9 v/v; CHES 100 mM, pH 9.0) at 25 °C.

Fig. S9 Fluorescence spectra ($\lambda_{ex} = 360 \text{ nm}$) of **1** (20 µM) measured with 10 equiv of CN⁻ in a buffered water/MeCN mixture (1/9 v/v) at different pH.

С	5.991217	-0.645498	0.701584	0	0.22898	-2.309321	-1.083378
С	6.168228	0.588236	0.05531	С	-4.708075	-0.075919	0.226742
С	5.06499	1.319723	-0.405721	С	-4.775797	1.279357	0.44311
С	3.79592	0.782864	-0.209823	С	-3.60891	2.117084	0.401527
С	3.619187	-0.446981	0.433317	0	-2.400047	1.462709	0.145229
С	4.708408	-1.173233	0.904237	С	-5.967403	-0.907589	0.287862
С	2.449011	1.33417	-0.587428	0	-3.561042	3.325451	0.572215
С	1.447871	0.324217	-0.192333	Н	6.863037	-1.196302	1.049121
С	2.144793	-0.757716	0.531082	Н	7.173952	0.97892	-0.085915
0	1.686872	-1.673563	1.203807	Н	5.184885	2.279751	-0.90144
0	2.269278	2.419218	-1.140927	Н	4.555872	-2.123837	1.40878
С	0.098913	0.536955	-0.387796	Н	-0.158293	1.565827	-0.642268
С	-0.988426	-0.380058	-0.326604	Н	-1.924539	-3.688756	-0.774806
С	-0.835169	-1.813043	-0.672366	Н	-4.139232	-2.745363	-0.250478
С	-2.048635	-2.626842	-0.579794	Н	-5.714077	1.779033	0.659653
С	-3.268714	-2.094516	-0.295373	Н	-5.899219	-1.677677	1.06702
С	-3.448414	-0.690216	-0.057084	Н	-6.837332	-0.2798	0.505035
С	-2.296995	0.118786	-0.095143	Н	-6.149368	-1.426442	-0.662117

Cartesian Coordinates (in Å) of 1'–CN⁻ (DFT/B3LYP /6-31G*, PCM: MeCN)

С	5.33012	-2.05753	-0.848418	С	-4.572204	-1.262529	0.558248
С	5.912889	-0.806082	-0.625792	С	-3.575728	-1.191662	1.586943
С	5.133241	0.276373	-0.162841	0	-2.41616	-0.499195	1.276064
С	3.781039	0.066226	0.056122	С	-5.487664	-0.759	-1.710412
С	3.198009	-1.18597	-0.166533	0	-3.656242	-1.675998	2.71501
С	3.952315	-2.259376	-0.615163	Н	5.946097	-2.883309	-1.205622
С	2.701644	1.018719	0.554869	Н	6.978049	-0.666465	-0.812499
С	1.482724	0.265583	0.570149	Н	5.570209	1.256488	0.018677
С	1.72336	-1.086275	0.179315	Н	3.483527	-3.227749	-0.779727
0	0.948206	-2.066265	0.119174	Н	-1.552978	1.933857	-3.301935
0	2.960915	2.187224	0.893909	Н	-3.67003	0.700121	-2.970435
С	-0.966845	0.763137	-0.111081	Н	-5.476696	-1.812135	0.799837
С	-0.714671	1.501679	-1.345931	Н	-5.125427	-1.246293	-2.625512
С	-1.755151	1.410555	-2.369136	Н	-6.332098	-1.342308	-1.325721
С	-2.92537	0.728373	-2.175564	Н	-5.862088	0.23179	-2.001169
С	-3.199367	0.055679	-0.950067	С	0.097832	0.712579	0.998308
С	-2.179821	0.115102	0.056372	Н	-0.264572	-0.046069	1.704713
0	0.317382	2.187833	-1.540012	Ν	-0.084328	2.901344	2.463017
С	-4.39268	-0.654549	-0.670289	С	0.066911	1.969613	1.781756

С	-6.036222	-0.326239	-0.741024	С	4.706593	0.249667	-0.235768
С	-6.071789	0.951434	-0.16869	С	4.568204	1.588128	-0.411615
С	-4.915773	1.548563	0.331609	С	3.287919	2.235225	-0.377613
С	-3.730276	0.834859	0.242263	0	2.183459	1.419001	-0.164935
С	-3.695235	-0.443028	-0.32708	С	6.060564	-0.393047	-0.277666
С	-4.844182	-1.041781	-0.827013	0	3.063745	3.420619	-0.52192
С	-2.359744	1.211775	0.671421	Н	-6.954951	-0.764014	-1.121907
С	-1.462926	0.064283	0.323079	Н	-7.017967	1.483301	-0.11548
С	-2.317279	-0.972872	-0.274726	Н	-4.942661	2.539915	0.775244
0	-1.977229	-2.087814	-0.680838	Н	-4.814878	-2.033896	-1.268497
0	-2.024698	2.258342	1.196741	Н	0.139907	1.216992	0.774329
С	-0.117123	0.212622	0.44543	Н	2.414981	-3.730948	0.550911
С	1.052962	-0.610186	0.240953	Н	4.495073	-2.478021	0.199005
С	1.140874	-2.020034	0.398215	Н	-0.727384	-2.504681	0.123704
С	2.393257	-2.656211	0.400111	Н	5.422299	2.233755	-0.58829
С	3.550559	-1.946338	0.203924	Н	6.108641	-1.149721	-1.065828
С	3.526141	-0.552295	-0.003039	Н	6.836159	0.348958	-0.462273
С	2.282195	0.078021	0.027338	Н	6.281839	-0.8984	0.666694
0	0.085551	-2.802461	0.632419				

С	5.203936	-2.118573	-0.95405	С	-4.463588	-1.385772	0.495567
С	5.823542	-0.896873	-0.716206	С	-3.461834	-1.349217	1.508263
С	5.089418	0.193451	-0.216399	0	-2.335182	-0.59561	1.248469
С	3.74284	0.017089	0.024435	С	-5.426108	-0.755032	-1.710091
С	3.121892	-1.208234	-0.213248	0	-3.498542	-1.918002	2.59532
С	3.831439	-2.287066	-0.698948	Η	5.786275	-2.950152	-1.3402
С	2.699637	0.98424	0.553165	Н	6.884489	-0.78398	-0.919721
С	1.465188	0.274549	0.580005	Н	5.566953	1.150219	-0.026704
С	1.662215	-1.070167	0.161852	Н	3.341637	-3.239475	-0.879274
0	0.848378	-2.012886	0.102615	Η	-1.646653	2.214053	-3.113513
0	2.978946	2.142933	0.904437	Н	-3.683952	0.868373	-2.862041
С	-0.971832	0.830001	-0.04776	Η	-5.339567	-1.987555	0.704008
С	-0.76952	1.664212	-1.211978	Η	-5.052381	-1.151636	-2.657971
С	-1.804505	1.611325	-2.223979	Η	-6.239122	-1.395767	-1.368234
С	-2.936477	0.864117	-2.076091	Η	-5.835832	0.237432	-1.916506
С	-3.166019	0.090267	-0.911271	С	0.106985	0.759272	1.037866
С	-2.148767	0.115254	0.080823	Н	-0.255833	0.033842	1.774291
0	0.239257	2.4088	-1.344855	Ν	0.028831	2.967376	2.447316
С	-4.329519	-0.687551	-0.679643	С	0.132632	2.026564	1.788814