Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information available for

Synthesis and Conformation of a Novel Fluorescein-Zn-Porphyrin Dyad and Intramolecular Energy Transfer

Olivier Rezazgui,^a Patrick Trouillas,^{b,c,*} Shi-hong Qiu,^a Benjamin Siegler,^d Johannes

Gierschner,^e Stéphanie Leroy-Lhez^{a,*}

^a LCSN EA1069, Univ. Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France

^b INSERM UMR 850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France

^c Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic

^d PIAM, Université d'Angers, LUNAM Université, Angers, France

^{el} Madrid Institute for Advanced Studies - IMDEA Nanoscience, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain

* corresponding author

Contents

1. NOESY spectrum of dyad 1 at 323 K	2
2. Excitation and emission spectra of dyad 1	3
3. DFT calculations of dyad 1 (linear and folded form)	4
4. TD-DFT calculations of compounds 1, 2 and 3	5
4-1. Excited states data	5
4-2. Excited states diagram	11
5. CT state between porphyrin and fluorescein patterns (B3LYP functional)	13
6. Computational data	14
6-1. Ground states	14
6-2. Excited states calculations	24
7. References	34

1. NOESY spectrum of dyad 1 at 323 K

Figure 1: Aromatic region of the NOESY spectrum of 1 at 323 K.

2. Excitation and emission spectra of dyad 1

Figure 2: Comparison between excitation (red line, $\lambda_{obs} = 650$ nm) and absorption (black line) spectra of dyad **1** in CHCl₃ (conc. 2 x 10⁻⁶ mol.L⁻¹, room temp.).

Figure 3: Normalized emission spectra $\lambda_{em} = 490$ nm (relative to porphyrin emission maximum) of dyad 1 in CHCl₃ (blue line) and DMSO (black line) at 298 K (conc. 2.10⁻⁶ M).

3. DFT calculations of dyad 1 (linear and folded form).

Table 1: Total energies of dyad **1** in two conformations (linear and folded form), in different solvents using PCM method. Energies are given in Hartrees and in eV.

	Gas	Gas phase Chlorofor		form DMSO		Water		
	Linear	Folded	Linear	Folded	Linear	Folded	Linear	Folded
	Energy (Hartree)							
B3LYP	-3635.3078	-3635.3140	-3635.4699	-3635.4986	-3635.3564	-3635.3890	-3635.3572	-3635.3949
ωB97XD	-3634.1359	-3634.1359	-3634.2429	-3634.2827	-3634.1566	-3634.2086	-3634.1574	-3634.2156
	Energy (eV)							
B3LYP	-98922.5407	-98922.7108	-98926.9529	-98927.7348	-98923.8654	-98924.7511	-98923.8867	-98924.9106
ωB97XD	-98889.8368	-98890.6517	-98893.5632	-98894.6479	-98891.2161	-98892.6314	-98891.2381	-98892.8207

Table 2: Energy gap between linear and fold form in dyad 1 in different solvents using PCM method.

	Gas phase	Chloroform	DMSO	Water	Gas phase	Chloroform	DMSO	Water
	ΔЕ ((linear-folded) i	ΔE (linear-folded) in kJ/mol					
B3LYP	0.01	0.03	0.03	0.04	16.41	75.44	85.45	98.79
ωB97XD	0.03	0.04	0.05	0.06	78.62	104.66	136.56	152.70
	Δ	AE (linear-folde	ΔE (linear-folded) in kcal/mol					
B3LYP	0.17	0.78	0.89	1.02	3.92	18.03	20.42	23.61
ωB97XD	0.81	1.08	1.42	1.58	18.79	25.01	32.64	36.50

4. TD-DFT calculations of compounds 1, 2 and 3

4-1. Excited states data

Table 3: Calculated optical properties (vertical transition wavelengths and energies, oscillator strength, configuration interaction description) as obtained with a) B3LYP and b) ω B97XD functionals for compound **1** (folded form).

Excited states	λ (nm)	E (eV)	f	MO contribution*
				H-1→L+2 (14%)
1	566.9	2.19	0.01	$H \rightarrow L (68\%)$
-	0000	>	0101	$H \to L + 1 (-13\%)$
				$H-1 \rightarrow L+1 (35\%)$
_				$H-1 \rightarrow L+2$ (19%)
2	555.3	2.23	0.07	$H \rightarrow L + 1 (-28\%)$
				$H \rightarrow L+2 (50\%)$
				H-1→L+1 (19%)
				H-1→L+2 (-32%)
3	553.9	2.28	0.05	H→L (19%)
				$H \rightarrow L+1 (50\%)$
				H→L+2 (28%)
4	492.0	2.52	0.01	H-1→L (70%)
	122.2	2.04	0.04	H-4→L (63%)
5	422.3	2.94	0.06	<i>H</i> -2→ <i>L</i> (-25%)
				H-4→L (26%)
	417.1		0.40	H-2→L (54%)
<i>.</i>				$H-2 \rightarrow L+1$ (-18%)
6		2.97		$H-1 \rightarrow L+1 (19\%)$
				H-1→L+2 (-14%)
				$H \rightarrow L+2$ (-12%)
	407.6	3.04	1.18	H-2→L+1 (42%)
				$H-2 \rightarrow L+2 (-22\%)$
_				$H-1 \rightarrow L+1$ (35%)
7				H-1→L+2 (24%)
				H→L+1 (16%)
				$H \rightarrow L+2$ (-25%)
				H-2→L (13%)
				H-2→L+1 (53%)
0	10 6 0	2.05	0.00	H-1→L+1 (-19%)
8	406.9	3.05	0.38	$H-1 \rightarrow L+2(-30\%)$
				H→L+1 (-20%)
				$H \rightarrow L+2(13\%)$
				<i>H</i> -2→ <i>L</i> (-15%)
				$H-2 \rightarrow L+2 (54\%)$
9	400 0	2 00		$H-1 \rightarrow L+1 (31\%)$
	402.8	3.08	0.58	H-1→L+2 (-14%)
				H→L+2 (-22%)
				$H \rightarrow L + 3 (12\%)$
				<i>H-2→L (-20%)</i>
10		2 00		H-2→L+2 (-37%)
10	401.7	3.09	0.78	H-1 \rightarrow L+1 (13%)
				H-1→L+2 (-30%)

A) B3LYP

				$\begin{array}{l} H \rightarrow L+1 \ (-21\%) \\ H \rightarrow L+3 \ (38\%) \end{array}$
11	400.8	3.09	0.50	$\begin{array}{c} H-2 \rightarrow L \ (15\%) \\ \text{H-2} \rightarrow \text{L+2} \ (13\%) \\ \text{H-1} \rightarrow \text{L+1} \ (-14\%) \\ \text{H-1} \rightarrow \text{L+2} \ (23\%) \\ \text{H} \rightarrow \text{L+1} \ (16\%) \\ \text{H} \rightarrow \text{L+3} \ (58\%) \end{array}$

*In black : transfer from porphyrin to porphyrin. In **red** : transfer from fluorescein to porphyrin orbitals. In *blue* : from fluorescein to fluorescein.

B) ω**B**97XD

Excited states	λ (nm)	E (eV)	f	MO contribution*
1	572.8	2.16	0.04	H-1 \rightarrow L+1 (43%) H \rightarrow L (54%)
				$\frac{11 \rightarrow L(3476)}{H_{-}1 \rightarrow L(-43\%)}$
2	571.6	2.17	0.07	$H \rightarrow L^{+1} (54\%)$
				<i>H</i> -2→ <i>L</i> +2 (44%)
				H-1→L (34%)
3	388.8	3.19	1.16	H-1→L+1 (25%)
				H→L (-19%)
				H→L+1 (28%)
	384.5		1.77	H-1→L (-35%)
4		3.22		H-1→L+1 (42%)
4				H→L (-32%)
				H→L+1 (-28%)
	277.0		1.61	H-2→L (-10%)
				<i>H</i> -2→ <i>L</i> +2 (50%)
5		3 20		H-1→L (-24%)
5	377.0	5.29		H-1→L+1 (-27%)
				H→L (21%)
				H→L+1 (-19%)
				H-9→L+2 (10%)
				H-7→L+2 (-23%)
0	206 5	4.04	0.12	H-5→L+2 (-14%)
8	306.5	4.04	0.12	H-4→L (-14%)
				<i>H</i> - <i>4</i> → <i>L</i> + <i>2 (55%)</i>
				<i>H</i> -2→ <i>L</i> +2 (11%)

*In black : transfer from porphyrin to porphyrin. In **red** : transfer from fluorescein to porphyrin orbitals. In *blue* : from fluorescein to fluorescein.

Excited states	λ (nm)	E (eV)	f	MO contribution [*]
1	553.4	2.24	0.03	H-1→L+1 (-44%) H→L (53%) H→L (-12%)
2	553.2	2.24	0.03	$H-1 \rightarrow L (44\%)$ $H \rightarrow L (12\%)$ $H \rightarrow L+1 (53\%)$
3	384.3	3.23	1.09	<i>H</i> -2→ <i>L</i> +2 (36%) H-1→L (-18%) H-1→L+1 (43%)

C) CAM-B3LYP

				H→L (35%)
				H→L+1 (15%)
				H-1→L (50%)
4	202.1	2.24	2.07	H-1→L+1 (22%)
4	4 382.1	3.24	2.07	H→L (18%)
				H→L+1 (-41%)
				<i>H</i> -2→ <i>L</i> +2 (59%)
	373.8	3.32		H-1→L (12%)
5			1.39	H-1→L+1 (-25%)
				H→L (-21%)
				H→L+1 (-10%)
				H-6→L+2 (-27%)
9	202.9	4.00	0.15	H-5→L+2 (57%)
	502.8	4.09	0.15	<i>H</i> - <i>4</i> → <i>L</i> +2 (-17%)
				<i>H</i> -2→ <i>L</i> +2 (10%)
9	302.8	4.09	0.15	$\begin{array}{c} H \rightarrow L+1 \ (-10\%) \\ \hline H-6 \rightarrow L+2 \ (-27\%) \\ H-5 \rightarrow L+2 \ (57\%) \\ H-4 \rightarrow L+2 \ (-17\%) \\ H-2 \rightarrow L+2 \ (10\%) \end{array}$

*In black : transfer from porphyrin to porphyrin. In **red** : transfer from fluorescein to porphyrin orbitals. In *blue* : from fluorescein to fluorescein.

Table 4: Calculated optical properties (vertical transition wavelengths and energies, oscillator strength, configuration interaction description) as obtained with a) B3LYP and b) ω B97XD functionals for compound **1** (linear form).

A) B3LYP

Excited states	λ (nm)	E (eV)	f	MO contribution [*]
1	542 7	2.28	0.04	H-1→L+2 (42%)
-	512.7	2.20	0.01	H→L+1 (56%)
2	510 1	2.20	0.04	H-1→L+1 (-42%)
L	342.4	2.29	0.04	H→L+2 (56%)
3	491.5	2.52	0.00	H→L (71%)
4	446.3	2.78	0.00	H-1→L (71%)
5	426.0	2.91	0.00	H-4→L (70%)
,	410.1	2.01	0.64	H-5→L (-16%)
0	412.1	3.01	0.64	H-2→L (67%)
	399.4		1.66	H-3→L+2 (16%)
				H-1→L+1 (52%)
7		3.10		H-1→L+2 (-15%)
				H→L+1 (11%)
				H→L+2 (40%)
				H-1→L+1 (16%)
8	397.4	0.10	1.59	H-1 \rightarrow L+2 (54%)
		3.12		$H \rightarrow L + 1 (-40\%)$
				$H \rightarrow I + 2 (12\%)$
				$11 \ 12 \ 2 \ (12 \ 10)$

*In black : transfer from porphyrin to porphyrin. In **red** : transfer from fluorescein to porphyrin orbitals. In *blue* : from fluorescein to fluorescein.

B) ω**B**97**XD**

Excited states	λ (nm)	E (eV)	f	MO contribution [*]
1	561.2	2.21	0.02	$\begin{array}{c} H-1 \to L \ (-44\%) \\ H-1 \to L+1 \ (-11\%) \\ H \to L \ (-13\%) \\ H \to L+1 \ (-52\%) \end{array}$
2	561.1	2.21	0.02	$ \begin{array}{c} \text{H-1} \rightarrow \text{L} (11\%) \\ \text{H-1} \rightarrow \text{L+1} (44\%) \\ \text{H} \rightarrow \text{L} (52\%) \\ \text{H} \rightarrow \text{L+1} (13\%) \end{array} $
3	380.0	3.26	1.41	$\begin{array}{c} H-4 \rightarrow L+2 \ (-10\%) \\ H-2 \rightarrow L+2 \ (64\%) \\ H-1 \rightarrow L \ (19\%) \\ H \rightarrow L+1 \ (16\%) \end{array}$
4	377.7	3.28	1.28	$\begin{array}{c} H-2 \rightarrow L+2 \ (-24\%) \\ H-1 \rightarrow L \ (47\%) \\ H-1 \rightarrow L+1 \ (-17\%) \\ H \rightarrow L \ (14\%) \\ H \rightarrow L+1 \ (40\%) \end{array}$
5	377.3	3.29	1.93	$ \begin{array}{c} \text{H-1} \rightarrow \text{L} (17\%) \\ \text{H-1} \rightarrow \text{L+1} (51\%) \\ \text{H} \rightarrow \text{L} (-43\%) \\ \text{H} \rightarrow \text{L+1} (14\%) \end{array} $

*In black : transfer from porphyrin to porphyrin. In **red** : transfer from fluorescein to porphyrin orbitals. In *blue* : from fluorescein to fluorescein.

Excited states	λ (nm)	E (eV)	f	MO contribution [*]
1	546.5	2.27	0.01	H-1 \rightarrow L (-19%) H-1 \rightarrow L+1 (-42%) H \rightarrow L (48%) H \rightarrow L+1 (-22%)
2	546.3	2.26	0.01	$\begin{array}{c} H-1 \to L (42\%) \\ H-1 \to L+1 (-19\%) \\ H \to L (21\%) \\ H \to L+1 (48\%) \end{array}$
3	378.2	3.28	2.12	$\begin{array}{c} H-2 \rightarrow L+2 \ (25\%) \\ H-1 \rightarrow L \ (48\%) \\ H-1 \rightarrow L+1 \ (13\%) \\ H \rightarrow L \ (11\%) \\ H \rightarrow L+1 \ (-42\%) \end{array}$
4	377.1	3.29	1.78	H-1 \rightarrow L (-13%) H-1 \rightarrow L+1 (52%) H \rightarrow L (45%) H \rightarrow L+1 (11%)
5	375.8	3.30	0.72	$H-2 \rightarrow L+2 (64\%)$ H-1 \rightarrow L (-19%) H \rightarrow L+1 (17%)

C) CAM-B3LYP

*In black : transfer from porphyrin to porphyrin. In **red** : transfer from fluorescein to porphyrin orbitals. In *blue* : from fluorescein to fluorescein.

Table 5: Computed optical properties obtained with a) B3LYP and b) ω B97XD (absorption wavelength, vertical transition energies, oscillator strength, configuration interaction (CI) description) for compound **2** (porphyrin).

A) B3LYP

Excited states	λ (nm)	E (eV)	f	MO contribution*
1	555.3	2.23	0.05	H-1 \rightarrow L+1 (40%) H \rightarrow L (58%)
2	554.3	2.24	0.06	$\begin{array}{c} H-1 \to L \ (-41\%) \\ H \to L+1 \ (58\%) \end{array}$
3	408.8	3.03	1.62	H-2→L+1 (24%) H-1→L (53%) H→L+1 (38%)
4	405.3	3.06	1.45	H-2→L (-15%) H-1→L+1 (56%) H→L (-39%)

B) ω**B**97**XD**

Excited states	λ (nm)	E (eV)	f	MO contribution [*]
1	564.3	2.20	0.03	H→L (54%) H→L+1 (-45%)
2	564.1	2.20	0.03	H-1→L (45%) H→L+1 (54%)
3	380.0	3.26	1.96	$H-1 \rightarrow L (54\%)$ $H \rightarrow L (10\%)$ $H \rightarrow L+1 (-45\%)$
4	379.0	3.27	1.85	$H-1 \rightarrow L+1 (54\%)$ $H \rightarrow L (45\%)$ $H \rightarrow L+1 (-10\%)$

C) CAM-B3LYP

Excited states	λ (nm)	E (eV)	f	MO contribution*
1	547.6	2.26	0.01	H-1→L+1 (-46%) H→L (53%)
2	547.5	2.26	0.01	H-1→L (46%) H→L+1 (53%)
3	378.7	3.27	1.96	H-1→L (53%) H→L+1 (-46%)
4	377.8	3.28	1.85	H-1→L+1 (53%) H→L (46%)

Table 6: Computed optical properties obtained with a) B3LYP and b) ω B97XD (absorption wavelength, vertical transition energies, oscillator strength, configuration interaction (CI) description) for compound **3** (fluorescein).

A) B3LYP

Excited state	λ (nm)	E (eV)	f	MO contribution*
1	428.8	2.89	0.59	H-2→L (15%) H→L (68%)

B) ω**B**97**XD**

Excited state	λ (nm)	E (eV)	f	MO contribution*
1	387.0	3.20	0.80	H-1→L (-11%) H→L (69%)

C) CAM-B3LYP

Excited state	λ (nm)	E (eV)	f	MO contribution [*]
1	386.03	3.2118	0.8230	H→L (69%)

4-2. Excited states diagram

Figure 4: Molecular orbitals and excited states involved in dyad 1 and reference compounds 2 and 3 with B3LYP functionals.

Figure 5: Molecular orbitals and excited states involved in dyad 1 and reference compounds 2 and 3 with ω B97XD functionals.

5. CT state between porphyrin and fluorescein patterns (B3LYP functional)

Figure 6: Internal charge transfer between porphyrin and fluorescein patterns in the $S_0 \rightarrow S_1$ transition, with B3LYP functional.

6. Computational data

All calculations were performed with GaussianG09¹. DFT and TD-DFT calculations were obtained in chloroform, which was described with PCM method.

6-1. Ground states

Compound 1 (linear form) ground state configuration (DFT-ωB97XD/6-31+G(d,p))

Charge=0, Multiplicity=1

Ν	6.65768900	1.48101300	-0.04781700
С	6.80728700	2.83903500	0.00136300
С	5.33493500	1.22290600	-0.28026100
С	5.52267100	3.46831100	-0.20735100
С	4.61428900	2.47286400	-0.37136300
С	8.01578500	3.52739100	0.20837600
С	9.27678400	2.93434300	0.38999700
Ν	9.54323900	1.59323800	0.36479100
С	10.49687700	3.65841900	0.66980100
С	10.87923200	1.43737100	0.61094600
С	11.48360900	2.73650200	0.80556700
С	11.56385700	0.21307700	0.70260300
С	10.98203000	-1.06176500	0.59087900
Ν	9.65690200	-1.32015600	0.37561800
С	11.70221000	-2.31188300	0.68897000
С	9.50512500	-2.67883100	0.34213200
С	10.79063900	-3.30753400	0.54783500
С	8.29614400	-3.36669600	0.14291600
С	7.03694000	-2.77289200	-0.05303200
Ν	6.77034800	-1.43198200	-0.03494900
С	5.82322400	-3.49751800	-0.35457400
С	5.43978900	-1.27602100	-0.31030200
С	4.84046500	-2.57540800	-0.51716400
С	4.75578500	-0.05115500	-0.41376700
С	7.95384200	5.02102500	0.24161500
С	8.52463500	5.77864200	-0.78613100
С	7.32481200	5.68473700	1.29986900
С	8.46696900	7.16954900	-0.75722000
С	7.26574400	7.07549900	1.32953200
С	7.83683400	7.82137500	0.30060200
С	3.29544800	-0.11773400	-0.72111300
С	2.38432800	-0.64883800	0.20174900
С	2.80375500	0.32069700	-1.95008900
С	1.03626700	-0.75308500	-0.10188600
С	1.45054700	0.22659600	-2.27135200
С	0.56261400	-0.32391400	-1.34636800
С	8.35302700	-4.86072300	0.12786400
С	7.77084500	-5.60209700	1.16110000

С	8.98621400	-5.54115400	-0.91717700
С	7.82239500	-6.99344400	1.15134300
С	9.03900700	-6.93247000	-0.92779300
С	8.45722700	-7.66198000	0.10684500
С	13.03625500	0.27448900	0.95506800
С	13.90605300	0.76224300	-0.02562800
С	13.56793200	-0.15023700	2.17715600
С	15.27686200	0.82453700	0.20976100
С	14.93867200	-0.09033000	2.41303700
С	15.79681200	0.39746800	1.42977500
0	-0.76887900	-0.49147300	-1.56262800
Н	5.34213400	4.53367900	-0.22661300
Н	3.55146000	2.57359400	-0.53883600
Н	10.58095500	4.73150800	0.76651300
Н	12.52524900	2.91507800	1.03133000
Н	12.76631600	-2.41274300	0.84781200
Н	10.96988900	-4.37278300	0.57973800
Н	5.74114300	-4 57079900	-0.45081700
Н	3.80520200	-2.75581800	-0.76875700
Н	9.01280100	5.27025600	-1.61293100
Н	6.88199500	5.10297700	2.10346300
Н	8 91190800	7 74362400	-1 56460600
Н	6 77651300	7 57611500	2 15987100
Н	2 74400400	-0.99248200	1 16749000
Н	3 49223800	0.73506900	-2 68104900
Н	0.33172000	-1 16944600	0.61088000
н	1 11427100	0.57554300	-3 24076000
н	7 27874900	-5 08046500	1 97727000
н	9 43717100	-4 97232800	-1 72546300
Н	7 36899500	-7 55458700	1 96310500
н	9 53176900	-7 44626500	-1 74793200
н	13 50002800	1.09355100	-0.97733900
н	12 89753600	-0 52570300	2 94521400
н	15 94007100	1 20341700	-0 56226500
Н	15 33647300	-0.42200200	3 36761500
C C	-1 28392800	-0 14092700	-2 83211200
н	-1 17985500	0.93971400	-3 00081600
Н	-0 74091200	-0.66052700	-3 63225700
C C	-2 72098700	-0 54650200	-2 86244500
C	-3 55004700	-0.94544900	-1 84230100
н	-3 40074500	-1 07304000	-0.78251200
N	-4 72518300	-1 20577000	-2 45914100
N	-4 63806600	-0.97595600	-3 77288000
N	-3 42292300	-0 57942500	-4 02414700
C C	-5.99117900	-0.57742500	-1.88331500
н	-5 77159100	-2 10792200	-0.92505800
Н	-6 40823700	-2 38781900	-2 55272000
C	-6 95294700	-0.45565000	-1 71821800
й	-6 53327200	0.27539600	-1 01922000
Н	-7 08210900	0.04010400	-2.68523200
		0.01010100	2.000202000

С	-8.30744800	-0.92330200	-1.21385500
Н	-8.74935700	-1.64603300	-1.91229200
Н	-8.22070000	-1.40030000	-0.22852300
0	-9.13171600	0.23066200	-1.12392800
С	-10.42446300	0.08794300	-0.77345900
С	-11.02331100	-1.13701300	-0.42932900
С	-11.17858900	1.26035200	-0.77195600
С	-12.36308000	-1.16676200	-0.08900300
Н	-10.45632000	-2.05951800	-0.42865200
С	-12.51891800	1.20235000	-0.42724500
Н	-10.72265500	2.20478300	-1.04432900
С	-13.14775300	-0.00263500	-0.07009500
Н	-12.81879700	-2.11787200	0.16528900
0	-13.19898700	2.37396800	-0.45907500
С	-14.54676900	0.03297200	0.29189200
С	-14.52301400	2.43134100	-0.15260600
С	-15.22179800	1.22126300	0.24027800
С	-15.23610100	-1.23747800	0.65401200
С	-15.12882100	3.64164800	-0.22502400
С	-16.61835600	1.37513000	0.59618900
С	-14.99387300	-1.93426100	1.85211800
С	-16.12051000	-1.78591800	-0.27835200
С	-16.53645000	3.79552200	0.10353800
Н	-14.56716400	4.51918400	-0.52522100
С	-17.23692500	2.56943000	0.53043100
Н	-17.15901700	0.49302300	0.92321900
С	-15.62967600	-3.15589300	2.08267800
С	-14.06712200	-1.45537100	2.92423800
С	-16.76126600	-2.99626700	-0.03162900
Н	-16.29850500	-1.25680400	-1.20947100
0	-17.12101300	4.88102200	0.04239200
Н	-18.28340400	2.67774900	0.79787000
С	-16.51478400	-3.68523400	1.15206900
Н	-15.42122500	-3.67912300	3.00959300
0	-13.56137600	-2.18693700	3.74876300
0	-13.87038900	-0.13795400	2.88594500
Н	-17.44901200	-3.39930800	-0.76816600
Н	-17.00793400	-4.63136900	1.34914900
С	-12.92876700	0.38943300	3.82294700
Н	-12.87263400	1.45561000	3.60924800
Н	-13.27421100	0.22058600	4.84504900
Н	-11.95305900	-0.08164400	3.68406000
Н	8.49898600	-8.74710900	0.09915200
Н	16.86590200	0.44641900	1.61365900
Н	7.79044900	8.90609700	0.32322900
Zn	8.15714300	0.08049800	0.16495000

Compound 1 (folded form) ground state configuration (DFT- ω B97XD/6-31+G(d,p))

Charge=0, Multiplicity=1

Ν	2.30164800	-0.71947900	0.19952800
С	2.17264100	-2.07955900	0.22236700
С	1.06260100	-0.18929800	0.42408100
С	0.80982300	-2.42203100	0.54552800
С	0.12276600	-1.25753200	0.65990500
С	3.18586300	-3.01342200	-0.06789300
С	4.54402800	-2.70487700	-0.25421200
Ν	5.10231100	-1.46365100	-0.11023900
С	5.57416400	-3.64976800	-0.62261900
С	6.44189500	-1.58718200	-0.34507400
С	6.74444800	-2.96301500	-0.67168100
С	7.38479700	-0.54337200	-0.29641800
С	7.09089300	0.81523600	-0.08641500
Ν	5.84076600	1.35850500	0.02092000
С	8.07743100	1.86408100	0.05193000
С	5.99058000	2.70724500	0.19265800
С	7.40082900	3.02750600	0.22634000
С	4.94788000	3.64261700	0.30395600
С	3.57224000	3.34023200	0.32359000
Ν	3.02600800	2.08925100	0.36780500
С	2.51331300	4.32097800	0.25468700
С	1.66432500	2.23320500	0.34300500
С	1.33905300	3.63908400	0.25218800
С	0.73362500	1.17967500	0.40274900
С	2.75188600	-4.43208500	-0.23306700
С	3.25175000	-5.45052800	0.58577100
С	1.80721100	-4.76126200	-1.21392200
С	2.81951400	-6.76487000	0.42599700
С	1.37151200	-6.07308100	-1.37189000
С	1.87791400	-7.07969700	-0.55180000
С	-0.71751500	1.52073700	0.36604600
С	-1.52254300	1.02693500	-0.67383600
С	-1.31428200	2.35542100	1.31247800
С	-2.85449700	1.38729800	-0.78450700
С	-2.65511000	2.72925600	1.21524600
С	-3.42333100	2.26027600	0.14891300
С	5.32409100	5.08585100	0.39129000
С	5.04121900	5.82118500	1.54766300
С	5.95759700	5.72960200	-0.67725900
С	5.38512500	7.16719800	1.63524100
С	6.30157000	7.07603400	-0.59128400
С	6.01646900	7.79833700	0.56550800
С	8.82000500	-0.90695700	-0.49678400
С	9.49168400	-1.70699600	0.43388100
С	9.51792500	-0.45054000	-1.62020200
С	10.83059800	-2.03992200	0.24719400

С	10.85643100	-0.78306100	-1.80837000
С	11.51661900	-1.57838000	-0.87415800
0	-4.72142300	2.58513700	-0.06598400
Н	0.43166700	-3.42367600	0.67950100
Н	-0.92359000	-1.13485400	0.89635500
Н	5.41796200	-4.69907600	-0.82839500
Н	7.72269700	-3.34735200	-0.92346400
Н	9.14864600	1.72236200	0.03113200
Н	7.81671000	4.01382800	0.37510400
Н	2.65302200	5.39038500	0.18505400
Н	0.34427500	4.05390800	0.17699800
Н	3.97501400	-5.20538900	1.35841900
Н	1.39953000	-3.98560800	-1.85583600
Н	3.21227600	-7.54215800	1.07497700
Н	0.62944900	-6.29180400	-2.13386000
Н	-1.08855900	0.36506800	-1.41736300
Н	-0.72186700	2.72990300	2.14222000
Н	-3.46524900	1.02677500	-1.60568100
Н	-3.08204000	3.37840800	1.97150300
Н	4.55178100	5.32863900	2.38320900
Н	6.17497600	5.16875800	-1.58192700
Н	5.16266600	7.72179900	2.54211500
H	6 78826100	7 56190300	-1 43181900
H	8 95857500	-2.06379000	1 31065000
H	9.00161200	0.16719400	-2.34959200
Н	11,33963600	-2.65767100	0.98117000
H	11 38229500	-0.42267000	-2.68751700
C	-5 27619800	3 67323700	0.65068700
е н	-5 45824200	3 40629000	1 69957200
H	-4 58713500	4 52832400	0.63146200
C	-6 56305200	4 00602100	-0.02870700
C	-6 98289800	3 63412900	-1 28120300
н	-6 53434100	3 02888900	-2 05146100
N	-8 21447400	4 17722400	-1 39229600
N	-8 54556400	4 84222700	-0.27855900
N	-7 54212500	4 74640600	0.55076200
C	-9 22005500	3 88114000	-2 40400800
е н	-8 68702300	3 46193400	-3 25807900
Н	-9 68875500	4 81675300	-2 71387100
C II	-10 26877800	2 89142200	-1 87349400
н	-10,99601000	3 42182700	-1 25092800
н	-10 80795400	2 46567300	-2 72529500
C C	-9 657/5900	1 79355500	-1 02009700
ч	-9.057+5700	2 24494900	-0.13586700
и И	-10/11850700	1 07010/00	-0.13300700
0	-10.+10.0700	1 11530200	-1 79865800
C	-7 67/10500	0.45126500	-1 18157800
C	-7 5/711300	0 32160000	0.21200500
C	-6 72371300	_0 11880100	-2 02870000
C	6 16520200	0.11007100	-2.02079000
C	-0.+0520000	-0.55651000	0.75550500

Н	-8.28443000	0.73628700	0.88775600
С	-5.66337500	-0.82178000	-1.47843200
Н	-6.82373300	-0.02610800	-3.10386700
С	-5.49974500	-0.95251600	-0.09025800
Н	-6.36752900	-0.45571700	1.81161400
0	-4.78029500	-1.37592700	-2.34839000
С	-4.40022800	-1.74148800	0.40101000
С	-3.78160800	-2.19397600	-1.91224500
С	-3.58578900	-2.38360300	-0.48873200
С	-4.11791800	-1.76513000	1.86572800
С	-2.99293300	-2.78408700	-2.84575000
С	-2.54246700	-3.30520300	-0.09737300
С	-4.63892500	-2.69824600	2.77824800
С	-3.26195500	-0.76437200	2.33395100
С	-1.92562700	-3.69222200	-2.45490100
Η	-3.15666500	-2.59837700	-3.90135300
С	-1.78492900	-3.94051600	-1.01077100
Н	-2.39697900	-3.48588200	0.96350300
С	-4.27854200	-2.61429700	4.12664700
С	-5.57094800	-3.80991200	2.41359900
С	-2.91236300	-0.69029500	3.67738800
Н	-2.87007600	-0.03600400	1.63103800
0	-1.17734900	-4.23840900	-3.27407500
Н	-1.01860900	-4.65016700	-0.71643400
С	-3.42112500	-1.62068300	4.57921900
Н	-4.68569300	-3.34927600	4.81219200
0	-5.95201400	-4.65190200	3.19921300
0	-5.94860700	-3.77424900	1.13635200
Н	-2.23967400	0.09333800	4.01140300
Н	-3.15327600	-1.57224800	5.62953500
С	-6.83228500	-4.81091300	0.70472600
Н	-7.00681700	-4.62036700	-0.35302300
Н	-6.36788900	-5.78905700	0.84641100
Н	-7.77018300	-4.76749800	1.26260400
Н	12.56141400	-1.83620700	-1.01958400
Н	6.28346800	8.84877100	0.63330900
Н	1.53848300	-8.10431300	-0.67205200
Zn	4.07127900	0.31838100	0.11538200

Compound 2 ground state configuration (DFT- ω B97XD/6-31+G(d,p))

Charge=0, Multiplicity=1

Ν	0.52784600	-1.50593900	0.05322400
С	0.27896900	-2.85793300	0.05122600
С	1.89207600	-1.33565500	0.08113400
С	1.53935400	-3.57105000	0.06573600
С	2.53019400	-2.63555300	0.09704000
С	-0.99706300	-3.46583400	0.03678500
С	-2.23456400	-2.78358400	0.00913700
Ν	-2.40474900	-1.42060800	-0.05258500
С	-3.53346800	-3.41997100	0.08045200
С	-3.75650100	-1.17098700	-0.03275200
С	-4.46888500	-2.42886600	0.05470000
С	-4.36526900	0.10449900	-0.06354400
С	-3.68232700	1.34228200	-0.06145800
Ν	-2.32104100	1.51244200	0.02770200
С	-4.31472300	2.63967900	-0.18094500
С	-2.06889500	2.86305600	-0.01904000
С	-3.32299400	3.57439200	-0.15458100
С	-0.79416200	3.47146300	0.01936400
С	0.44288900	2.79007700	0.06684500
Ν	0.61261500	1.42566600	0.07870500
С	1.74189800	3.42881800	0.10673200
С	1.96443800	1.17668400	0.11045300
С	2.67706700	2.43739900	0.12020700
С	2.57515700	-0.09835900	0.10991800
С	-1.04392700	-4.96429400	0.06466200
С	-1.50966800	-5.68791700	-1.04537500
С	-0.62667400	-5.67696600	1.20084900
С	-1.55534600	-7.08319400	-1.02123700
С	-0.67318800	-7.07215800	1.22651900
С	-1.13720600	-7.77998500	0.11506300
С	4.07281600	-0.13935700	0.14051700
С	4.78868300	0.27961200	1.27734400
С	4.80914800	-0.59085600	-0.96217900
С	6.17759700	0.24989000	1.30680900
С	6.20652600	-0.62707700	-0.94941100
С	6.90050700	-0.20234200	0.19109900
С	-0.75299500	4.97032400	-0.00329300
С	-0.25075000	5.66103800	-1.11836200
С	-1.22028700	5.71599000	1.09130100
С	-0.21555400	7.05670100	-1.13812800
С	-1.18423700	7.11164400	1.07311400
С	-0.68172200	7.78661200	-0.04196500
С	-5.86276400	0.14831900	-0.09843500
С	-6.57156200	-0.33946700	-1.20892600
С	-6.59118900	0.67769000	0.97988600
С	-7.96672300	-0.29828100	-1.24106300

С	-7.98638900	0.71730700	0.94961700
С	-8.67888500	0.22975300	-0.16142000
0	8.25732300	-0.19083500	0.31606200
Н	1.65225800	-4.64539900	0.05690300
Н	3.59588600	-2.80953400	0.12802100
Н	-3.70691000	-4.48359200	0.15674600
Н	-5.54231200	-2.53906100	0.10735400
Н	-5.37576300	2.81228800	-0.28848300
Н	-3.42985700	4.64644700	-0.23539100
Н	1.91621600	4.49494000	0.11727900
Н	3.75133700	2.54992500	0.13467600
Н	-1.83084000	-5.14999900	-1.93308400
Н	-0.27122600	-5.13026200	2.06990400
Н	-1.91439600	-7.62506400	-1.89219800
Н	-0.35053500	-7.60501300	2.11705800
Н	-1.17303900	-8.86584100	0.13448700
Н	4.24496100	0.62841000	2.15097100
Н	4.28344900	-0.91524700	-1.85611900
Н	6.72600500	0.57046700	2.18745600
Н	6.73589000	-0.97910800	-1.82717000
Н	0.10658300	5.09742200	-1.97577300
Н	-1.60724000	5.19461500	1.96249900
Н	0.17240300	7.57289100	-2.01227500
Н	-1.54593300	7.67062300	1.93208100
Н	-0.65409200	8.87277900	-0.05685700
Н	-6.02150200	-0.74516700	-2.05345900
Н	-6.05690000	1.05165700	1.84883300
Н	-8.49629400	-0.67552700	-2.11188300
Н	-8.53166600	1.12553500	1.79644300
Н	-9.76478000	0.26101900	-0.18568100
С	9.05767400	-0.62495900	-0.78885600
Н	8.82559300	-1.67318700	-1.02213600
Н	8.82447300	-0.01765400	-1.67527100
С	10.52244400	-0.46865300	-0.40065700
Н	10.71535700	-1.07759500	0.49160500
Н	11.12454800	-0.89837300	-1.21170200
С	10.93743000	0.98466300	-0.14960700
Н	10.35078600	1.42479800	0.66285900
Н	11.99654500	1.04763600	0.12296800
Н	10.78431700	1.59823000	-1.04613200
Zn	-0.89654300	0.00313800	0.04053400

Compound 3 ground state configuration (DFT- ω B97XD/6-31+G(d,p))

Charge=0, Multiplicity=1

С	4.28989400	-1.91861500	-0.13275300
С	3.48621400	-0.85116300	-0.29474500
С	2.04014200	-0.97995000	-0.31033000
С	1.51220200	-2.31894200	-0.09694300
С	2.30074300	-3.40625700	0.06437500
С	3.75322000	-3.28452200	0.04514800
С	1.18272000	0.07054300	-0.46687700
С	-0.70153200	-1.47519800	-0.20195200
С	-0.24623400	-0.16561400	-0.43335300
С	-1.21969100	0.82931500	-0.60579900
Н	-0.90773300	1.84978500	-0.80175300
С	-2.57343900	0.54857900	-0.53178200
С	-2.99282100	-0.77042700	-0.28550000
С	-2.04983900	-1.78448300	-0.12495300
Н	5.37028700	-1.81935700	-0.11733700
Н	3.90886500	0.14122000	-0.41165400
Н	1.86695800	-4.38713100	0.21887500
Н	-3.28881000	1.34933800	-0.66670900
Н	-2.36747200	-2.80420200	0.05613000
0	0.16227300	-2.50659800	-0.04337400
0	-4.28326200	-1.15131200	-0.19152400
0	4.50237200	-4.25140000	0.18022600
С	1.68004200	1.45332100	-0.71447200
С	1.53961200	2.49782000	0.21629700
С	2.25296900	1.73416800	-1.95817800
С	1.96344600	3.78692700	-0.11423400
С	2.69071100	3.01706500	-2.27263200
Н	2.34798200	0.93284400	-2.68440200
С	2.54578200	4.04798400	-1.34829200
Н	1.82823700	4.57670900	0.61698200
Н	3.14010500	3.20845500	-3.24166400
Н	2.88113900	5.05157200	-1.58775800
С	0.92046500	2.32589200	1.56808100
0	0.35329000	3.21746300	2.16172400
0	1.07049500	1.09134100	2.05288200
С	-5.30606800	-0.17329300	-0.33960400
Н	-5.22681500	0.29814000	-1.32904100
Н	-5.18658200	0.60594300	0.42614900
С	-6.64630800	-0.86746100	-0.18572800
Н	-6.72572300	-1.65282100	-0.94463500
Н	-6.67714000	-1.36084400	0.79129500
С	-7.80493300	0.11996000	-0.31850400
Н	-8.76459500	-0.39051600	-0.20567800
Н	-7.75231500	0.90080500	0.44759600
Н	-7.80200200	0.60962400	-1.29811600
С	0.40947300	0.81348300	3.29028900

Η	0.78052900	1.47324600	4.07689400
Η	-0.66795100	0.95278000	3.17589400
Η	0.64108200	-0.22633100	3.51410300

6-2. Excited states calculations

Absorption spectra calculations for compounds 1, 2 and 3 were performed using B3LYP, CAM-B3LYP and wB97XD methods, and 6-31+G(d,p) as basis set.

Compound 1 (linear form) absorption spectrum calculation and input keywords

#p scrf=(solvent=chloroform) geom=connectivity gfinput gfprint iop(6/7=3) pop=full

pseudo=read td=(nstates=30)

Charge=0, Multiplicity=1

Ν	-4.76903200	1.47531700	0.32992800
С	-4.97688400	2.82510000	0.29139400
С	-3.44562200	1.27077200	0.60592800
С	-3.72778900	3.50749900	0.54917400
С	-2.78338900	2.54983400	0.73551300
С	-6.21116500	3.46094700	0.06148200
С	-7.44248000	2.81542700	-0.14927500
Ν	-7.65220200	1.46455400	-0.13309300
С	-8.68709300	3.48747100	-0.45475700
С	-8.97314100	1.25109700	-0.41074600
С	-9.62964600	2.52421500	-0.61527200
С	-9.59908000	-0.00306600	-0.52722600
С	-8.96404200	-1.25340400	-0.41512300
Ν	-7.63403700	-1.45667500	-0.17621600
С	-9.62646600	-2.53348400	-0.54295600
С	-7.42121300	-2.80712800	-0.16050900
С	-8.67423400	-3.48991000	-0.39870700
С	-6.18428100	-3.44178200	0.04618100
С	-4.95529800	-2.79626700	0.27589900
Ν	-4.74953700	-1.44569900	0.28596700
С	-3.71664700	-3.47094200	0.59480600
С	-3.43627100	-1.23317300	0.60137800
С	-2.78228700	-2.50764700	0.80153700
С	-2.81513000	0.02111400	0.74700400
С	-6.21645500	4.95537700	0.04034700
С	-6.87247600	5.67714200	1.04232900
С	-5.56591800	5.65835300	-0.98011400
С	-6.88670800	7.06845700	1.02300300
С	-5.57503600	7.04852100	-1.00182600
С	-6.23842400	7.75493600	-0.00002000
С	-1.36890000	0.02243500	1.12317200
С	-0.38267700	-0.43028900	0.23682100
С	-0.96696300	0.45929400	2.38523100
С	0.95381200	-0.45451300	0.60545000
С	0.37189800	0.44378000	2.77214200
С	1.33784500	-0.02322000	1.87980400
С	-6.17161400	-4.93635700	0.02609000
С	-5.53273400	-5.62361900	-1.01087400

С	-6.79098900	-5.67284900	1.04158900
С	-5.51955000	-7.01448900	-1.03952000
С	-6.77955400	-7.06330500	1.01744700
C	-6.14495100	-7.73521100	-0.02531700
C	-11.06558300	-0.00619400	-0.81650000
C	-11.98167300	0.44656000	0.13882500
C	-11.54839000	-0.46606500	-2.04644300
Č	-13.34706000	0.44145000	-0.12694800
Ċ	-12.91262300	-0.47533600	-2.31564700
C	-13.81390200	-0.02144800	-1.35517100
0	2.66694000	-0.09552200	2.15602900
H	-3.59183900	4.57903000	0.58655800
Н	-1.73247100	2.69505700	0.94142400
Н	-8.81784600	4.55585600	-0.55135300
Н	-10.67249300	2.66120800	-0.86371000
Н	-10.68184300	-2.68110800	-0.72235100
Н	-8 80773000	-4 56121500	-0.44890100
Н	-3 58571400	-4 54097800	0.67251700
Н	-1.74609600	-2.64615000	1.07553200
Н	-7 37242000	5 14249600	1 84495500
Н	-5 05054200	5 10828500	-1 76229500
Н	-7 38777800	7 62491500	1 80800600
Н	-5.06093700	7 58641100	-1 79209700
Н	-0 66974900	-0 77217300	-0 75352800
Н	-1 71384900	0.81496000	3 08919500
Н	1.71627200	-0.80815200	-0.08109000
Н	0.63625900	0.79172000	3,76373600
Н	-5.04351000	-5.06164100	-1.80134800
Н	-7 28002200	-5 14973900	1 85839300
Н	-5.01758100	-7.54310300	-1.84317600
Н	-7.24881500	-7.62904600	1.81586900
Н	-11.61839100	0.80021900	1.09959700
Н	-10.84620500	-0.82094200	-2.79535300
Н	-14.05344500	0.77933600	0.62418900
Н	-13.28239400	-0.84512500	-3.26649000
C	3.08836500	0.23103400	3.46645500
H	2.90100900	1.29064300	3.68416700
Н	2,53685800	-0.36777600	4.20361000
C	4 54999300	-0.06353700	3,55463600
C	5.37294000	-0.72057700	2.67184400
H	5.20676700	-1.16431300	1.70378800
N	6.57564500	-0.72904500	3.28925600
N	6.51084300	-0.11465600	4.47311800
N	5.28222600	0.29045300	4.64145300
C	7.84943800	-1.23983300	2.80373200
H	7.63028200	-1.98364900	2.03457700
Н	8.33355300	-1.74801300	3.64133500
C	8.72848200	-0.11495800	2.26063000
H	8.22042300	0.38390200	1.42864500
Н	8.89382100	0.62678500	3.04838700
		-	

С	10.06797800	-0.65280600	1.78878500
Н	10.58931300	-1.16980100	2.60465700
Н	9.93732300	-1.35661100	0.95728500
0	10.83552500	0.46788500	1.36223500
С	12.08844000	0.26815000	0.91422500
С	12.69320800	-0.99770200	0.79341000
С	12.79071600	1.41929300	0.55745500
С	13.98596700	-1.09026700	0.31688200
Н	12.16152500	-1.90116800	1.06390400
С	14.08675200	1.29809000	0.08391100
Н	12.32739400	2.39440500	0.65028700
С	14.71999300	0.05034900	-0.04783600
Н	14.44747200	-2.06715000	0.21879600
0	14.71974500	2.44994700	-0.25063100
С	16.06240900	0.01281300	-0.56504300
С	15.98996000	2.44287700	-0.73258800
С	16.69021600	1.18480600	-0.89133700
С	16.77146900	-1.29635600	-0.66331300
С	16.54875600	3.64044700	-1.04574700
С	18.03619900	1.25874900	-1.41650400
С	16.82542300	-2.07708800	-1.83122900
С	17.43925500	-1.74000300	0.48076000
С	17.89859000	3.72035000	-1.57145200
Н	15.98848200	4.55865700	-0.90735100
С	18.60469100	2.43798700	-1.73724100
Н	18.58161900	0.32950700	-1.54783200
С	17.55524400	-3.26885900	-1.82858700
С	16.14847300	-1.71915300	-3.11552600
C	18.15170200	-2.93506100	0.47510800
Н	17.40184700	-1.13466000	1.38130100
0	18.43903900	4.79493400	-1.86611500
Н	19.61450700	2.48544900	-2.13316500
С	18.21206800	-3.70251900	-0.68474200
Н	17.59339800	-3.85030700	-2.74326000
0	16.40767000	-2.24268000	-4.17969900
0	15.21624700	-0.78094200	-2.96616300
Н	18.66144100	-3.26085100	1.37600300
Н	18.76750800	-4.63438100	-0.69844900
С	14.53763400	-0.35796400	-4.15174600
Н	13.83252200	0.40429300	-3.82481200
Н	15.24925200	0.05909200	-4.86749300
Н	14.01022700	-1.19901600	-4.60648100
Н	-6.13817689	-8.80497436	-0.04677557
H	-14.86395629	-0.02837100	-1.56069002
H	-6.24942506	8.82474084	-0.01724132
Zn	-6.20090500	0.00935400	0.07699100

Compound 1 (folded form) absorption spectrum calculation and input keywords

#p scrf=(solvent=chloroform) geom=connectivity gfinput gfprint iop(6/7=3) pop=full

pseudo=read td=(nstates=30)

Charge=0, Multiplicity=1

Ν	1.08125900	-0.72998900	0.26426000
С	0.85722200	-2.07351800	0.34644300
С	-0.11645300	-0.10140600	0.45642500
С	-0.52977400	-2.30386100	0.66986000
С	-1.13189600	-1.08836800	0.73126700
С	1.81050300	-3.08774800	0.11605100
С	3.19374600	-2.88708200	-0.03189800
Ν	3.83816000	-1.68561300	0.09275300
С	4.16518000	-3.91674000	-0.33025000
С	5.17169700	-1.91252000	-0.08562100
С	5.38392000	-3.31873600	-0.35391300
С	6.18635700	-0.93571900	-0.04341000
С	5.98493800	0.45168200	0.07553600
Ν	4.77491000	1.08659000	0.08958300
С	7.03909400	1.43701300	0.19463800
С	5.01368900	2.43011700	0.17824300
С	6.44168100	2.65378200	0.25712900
С	4.03719300	3.44135800	0.18419000
С	2.64175000	3.23846500	0.18813900
Ν	2.01091000	2.03434200	0.30658200
С	1.65250800	4.28189100	0.03484900
С	0.66256200	2.26680800	0.25445300
С	0.43421000	3.68242500	0.06672500
С	-0.34187200	1.28594900	0.36733700
С	1.27085100	-4.47124400	-0.02936700
С	1.67955400	-5.51854900	0.80561500
С	0.31238700	-4.73809600	-1.01469900
С	1.14362000	-6.79323200	0.65967500
С	-0.23288200	-6.00916000	-1.15874100
C	0.18336000	-7.03952300	-0.32107100
C	-1.76250800	1.73610000	0.32130400
C	-2.61504400	1.26622900	-0.69107600
C	-2.27883600	2.65638300	1.23546600
C	-3.91322900	1.73280400	-0.80968400
С	-3.58470600	3.13531000	1.13150100
C	-4.39918400	2.68794200	0.08999000
C	4.51335300	4.85648600	0.16704500
C	4.21954200	5.71928300	1.22941400
C	5.24446900	5.35313100	-0.91770600
C	4.64448100	7.04286900	1.20949000
C	5.67263300	6.67642800	-0.94159300
C	5.37151200	7.52323700	0.12229900
С	7.59628100	-1.41635400	-0.14867000

С	8.13996800	-2.25137300	0.83397000
С	8.39789900	-1.05033200	-1.23609100
С	9.45126900	-2.70460800	0.73736000
С	9.70987400	-1.50035300	-1.33650100
С	10.23852200	-2.32796300	-0.34838200
0	-5.66700600	3.11062000	-0.13034000
Н	-0.98196100	-3.26774600	0.84573300
Н	-2.16791000	-0.88197400	0.95638900
Н	3.94467800	-4.95945300	-0.50950100
Н	6.33857100	-3.78410600	-0.55402500
Н	8.09777000	1.22421000	0.23839600
Н	6.92259800	3.61600100	0.36122700
Н	1.86144600	5.33300200	-0.10478100
Н	-0.52997600	4.15726500	-0.04426400
Н	2.41554000	-5.32827600	1.58136500
Н	-0.02285500	-3.94243600	-1.67348000
Н	1.47247800	-7.59765800	1.31015000
Н	-0.98191100	-6.19320800	-1.92152500
Н	-2.24456300	0.54111500	-1.40972900
Н	-1.64951300	3.01587000	2.04426700
Н	-4.55983600	1.39114800	-1.61124000
Н	-3.94834000	3.84763400	1.86321500
Н	3,65091300	5.34699100	2.07660900
Н	5.46955400	4.69725400	-1.75375800
Н	4 40156600	7.70852500	2.03131500
Н	6 22245200	7.06035000	-1.79449300
н	7 52753800	-2 54594000	1 68139500
Н	7 98495500	-0.41245200	-2.01223400
н	9.86310000	-3 35910900	1 49857000
Н	10 32016300	-1 22414400	-2 19018400
C	-6 12643300	4 26656800	0 54869500
н	-6 31116100	4 05586200	1 60948000
н	-5 37515900	5.06485600	0.48473000
C C	-7 39546000	4 66596600	-0.12895600
C	-7 85467000	4 28115200	-1 36419500
н	-7 45661800	3 62441100	-2 11978500
N	-9.04850500	4 90010800	-1 48215100
N	-9 32136400	5 62358400	-0 39060200
N	-8 31585500	5 48967200	0.43310400
C	-10 07962700	4 63800700	-2 47883200
н	-9 57874600	4 16378400	-3 32340900
Н	-10 49195900	5 59135500	-2 81339900
C II	-11 18359200	3 73109300	-1 91373100
ч	-11.87323300	A 32333700	-1.30/25300
п ц	11 75373000	4.32333700	2 75048800
C	-11.73373900	2 62167400	-2.7504000
с ц	-10.04031300	2.02107400	-1.03006200
Ц	-10.14340200	1 96822200	-0.10120200
0	-11.44372300	1.20033200	-0.07423100
C	-7.10/0/000 9.75610600	1.03070200	1 16161200
U	-0./3019000	1.13000000	-1.10404300

С	-8.62360500	1.04450400	0.23370100
С	-7.86256900	0.46949700	-2.00154100
С	-7.59263400	0.30034400	0.76890700
Н	-9.32021400	1.53578900	0.90000500
С	-6.85462100	-0.29562900	-1.43731000
Н	-7.96641000	0.53772600	-3.07807200
С	-6.68487800	-0.39423300	-0.04645900
Н	-7.49163700	0.22891900	1.84669100
0	-6.02725100	-0.94602900	-2.29577100
С	-5.64730600	-1.24978500	0.45999500
С	-5.08724600	-1.81863700	-1.84193500
С	-4.89163900	-1.98057300	-0.41701300
С	-5.35064000	-1.25110000	1.92209900
С	-4.35029200	-2.49189400	-2.76499100
С	-3.91300600	-2.96077100	-0.00721700
С	-5.86957100	-2.16786700	2.85160600
С	-4.46903600	-0.26106400	2.36458000
С	-3.34813800	-3.45920700	-2.35569700
Н	-4.51238000	-2.32327100	-3.82391100
С	-3.21080200	-3.67470900	-0.90827600
Н	-3.76595900	-3.12111300	1.05655700
С	-5.47985900	-2.08177900	4.19145000
С	-6.83039100	-3.26098000	2.50975300
С	-4.09322200	-0.18207400	3.70098500
Н	-4.07674200	0.45412700	1.64829600
0	-2.64400800	-4.08025700	-3.16613300
Н	-2.49124600	-4.42437200	-0.59579500
С	-4.59834800	-1.09818800	4.61959100
Н	-5.88437600	-2.80423200	4.89178200
0	-7.14231100	-4.14692100	3.27884300
0	-7.32076500	-3.15252100	1.27695900
Н	-3.40360200	0.59415800	4.01703200
Η	-4.30992600	-1.04537600	5.66412200
С	-8.22980600	-4.17341500	0.85724000
Н	-8.46188700	-3.94501900	-0.18160300
Н	-7.76043700	-5.15582400	0.93817600
Н	-9.13553500	-4.14767600	1.46698000
Н	11.24825629	-2.67396222	-0.42335670
Н	5.69824977	8.54197903	0.10477443
Н	-0.23279867	-8.01931088	-0.42936537
Zn	2.92439600	0.17357000	0.19136700

Compound 2 absorption spectrum calculation and input keywords

#p scrf=(solvent=chloroform) geom=connectivity gfinput gfprint iop(6/7=3) pop=full

pseudo=read td=(nstates=30)

Charge=0, Multiplicity=1

Ν	0.51945400	-1.50380500	0.06922700
С	0.26645800	-2.84716700	0.07057400
С	1.87670700	-1.34171800	0.10533700
С	1.51937700	-3.56826400	0.10136100
С	2.51037300	-2.64106800	0.13260500
С	-1.00585200	-3.44460900	0.04542700
С	-2.23373600	-2.76124800	0.00489000
Ν	-2.39573800	-1.40486100	-0.05391600
С	-3.53248800	-3.39441100	0.05731200
С	-3.73920500	-1.15183300	-0.04781600
С	-4.45969000	-2.40356000	0.02426400
С	-4.33752600	0.12020300	-0.07786000
С	-3.65331400	1.34889200	-0.06525400
Ν	-2.29902300	1.51102900	0.02802700
С	-4.28185900	2.64647300	-0.17460200
С	-2.04329700	2.85362400	-0.00782600
С	-3.29052600	3.57310700	-0.13855900
С	-0.77199300	3.45161400	0.03875400
С	0.45600700	2.76867200	0.08861500
Ν	0.61812700	1.41104800	0.09367000
С	1.75413700	3.40337500	0.13656500
С	1.96130800	1.15822500	0.12899500
С	2.68132500	2.41196800	0.14867400
С	2.56147900	-0.11373000	0.13009900
С	-1.06169600	-4.93860000	0.07959200
С	-1.48615700	-5.66031300	-1.04059800
С	-0.69791400	-5.63836000	1.23458300
С	-1.54714500	-7.05095900	-1.00662100
С	-0.75788500	-7.02895100	1.26973500
С	-1.18326600	-7.73891700	0.14893200
С	4.05482100	-0.16450800	0.15284900
С	4.77542900	0.22579200	1.28953100
С	4.77255100	-0.59969900	-0.96042700
С	6.16038900	0.18665000	1.30712400
С	6.16588500	-0.64859100	-0.95897500
С	6.86818300	-0.24907400	0.18016700
C	-0.72205900	4.94607200	0.01955900
C	-0.22961100	5.62823900	-1.09775200
C	-1.16792900	5.68619000	1.11926400
C	-0.18079700	7.01955700	-1.11453200
C	-1.12046700	7.07773600	1.10345400
C	-0.62566900	7.74790700	-0.01324100
С	-5.83046000	0.17210900	-0.12580300

С	-6.52333200	-0.28630900	-1.25115400
С	-6.56030600	0.68272100	0.95288500
С	-7.91382200	-0.23355800	-1.29863400
С	-7.95072500	0.73649100	0.90653200
С	-8.63119200	0.27877700	-0.21975100
0	8.21818600	-0.24853300	0.29184100
Н	1.62443400	-4.64392600	0.10220600
Н	3.57577700	-2.81728000	0.17374500
Н	-3.70823200	-4.45838700	0.12858800
Н	-5.53476700	-2.50687500	0.06432100
Н	-5.34255500	2.82209900	-0.28356700
Н	-3.39047600	4.64678100	-0.21134200
Н	1.93094900	4.46937500	0.15502700
Н	3.75661600	2.51777600	0.17052900
Н	-1.76888600	-5.12378800	-1.94201600
Н	-0.37040700	-5.08444600	2.10992200
Н	-1.87725800	-7.59700800	-1.88542200
Н	-0.47636500	-7.55735400	2.17579900
Н	-1.23258700	-8.82340200	0.17663200
Н	4.23820200	0.56498100	2.17077000
Н	4.23454200	-0.90694900	-1.85294800
Н	6.71783300	0.48873900	2.18798600
Н	6.68330500	-0.99384300	-1.84635200
Н	0.11495700	5.06017100	-1.95730900
Н	-1.55143100	5.16370000	1.99111500
Н	0.20316700	7.53413300	-1.99038200
Н	-1.46704100	7.63809800	1.96674800
Н	-0.58672800	8.83310800	-0.02551600
Н	-5.96409200	-0.68204000	-2.09424400
Н	-6.03030500	1.03758400	1.83228200
Н	-8.43612600	-0.58966700	-2.18164400
Н	-8.50230100	1.13402900	1.75332000
Н	-9.71563500	0.32218500	-0.25716700
С	8.99382300	-0.63653200	-0.83385500
Н	8.78292700	-1.68477300	-1.08545000
Н	8.72799500	-0.01357600	-1.70001400
С	10.45939200	-0.45015700	-0.48114400
Н	10.69872400	-1.08311200	0.38141500
Н	11.05159600	-0.82407500	-1.32478400
С	10.82123600	1.00455800	-0.18675800
Н	10.25461200	1.38102700	0.66973600
Н	11.88762000	1.10500600	0.03794900
Н	10.59622400	1.64453400	-1.04809300
Zn	-0.88944300	0.00335600	0.02951000

Compound 3 absorption spectrum calculation and input keywords

#p scrf=(solvent=chloroform) geom=connectivity gfinput gfprint iop(6/7=3) pop=full

pseudo=read td=(nstates=30)

Charge=0, Multiplicity=1

С	4.27293700	-1.92996200	-0.15254800
С	3.47103600	-0.85742400	-0.31322000
С	2.02874200	-0.98151000	-0.31884400
С	1.49889600	-2.31327100	-0.10403200
С	2.28871000	-3.40686800	0.05702300
С	3.73229900	-3.28639300	0.03296400
С	1.16927800	0.07475200	-0.46915700
С	-0.71142400	-1.46905400	-0.20139200
С	-0.25367100	-0.15963800	-0.43204000
С	-1.22798500	0.83902900	-0.60305600
Н	-0.91550800	1.85864400	-0.80172400
С	-2.57905800	0.55908000	-0.52750400
С	-3.00056700	-0.76220600	-0.28046100
С	-2.05905400	-1.77878400	-0.12224600
Н	5.35328700	-1.82845000	-0.14748000
Н	3.89957000	0.13124600	-0.43827200
Η	1.84727500	-4.38425800	0.21429000
Η	-3.29457700	1.35946500	-0.66266900
Η	-2.37719300	-2.79854200	0.05875500
0	0.15407900	-2.50116500	-0.04618800
0	-4.28880000	-1.13842200	-0.18574300
0	4.48577500	-4.26342300	0.17114400
С	1.67254700	1.45500500	-0.71789800
С	1.55563500	2.49518300	0.22147100
С	2.22799600	1.73417000	-1.96939500
С	1.99019000	3.78080200	-0.10882400
С	2.67246900	3.01518400	-2.28432000
Η	2.30386400	0.93745200	-2.70263400
С	2.55473200	4.04209800	-1.35161600
Η	1.88409600	4.57006200	0.62738100
Η	3.10770400	3.20718400	-3.25933100
Н	2.89871600	5.04268700	-1.59030200
С	0.95778700	2.31465700	1.58038900
0	0.40370200	3.20570500	2.19289500
0	1.10624300	1.07745200	2.04942800
С	-5.31595500	-0.15567700	-0.33299200
Η	-5.23584500	0.31130500	-1.32308300
Η	-5.19155400	0.62086600	0.43284100
С	-6.65469100	-0.85060500	-0.17496100
Н	-6.73896700	-1.63507300	-0.93442700
Н	-6.68561100	-1.34151500	0.80342400
С	-7.81198200	0.13888800	-0.30556400
Η	-8.77122400	-0.37173700	-0.18970500

-7.75452400	0.91932800	0.46035500
-7.80920400	0.62713400	-1.28568500
0.46387700	0.77863500	3.29537300
0.86127700	1.41362200	4.08875200
-0.61338600	0.93089600	3.20325700
0.68735000	-0.26805500	3.49105900
	-7.75452400 -7.80920400 0.46387700 0.86127700 -0.61338600 0.68735000	-7.754524000.91932800-7.809204000.627134000.463877000.778635000.861277001.41362200-0.613386000.930896000.68735000-0.26805500

7. References

1M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision A.1*, Gaussian, Inc., Wallingford, CT, 2009.