Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary information

Surface reactivity of non-hydrolytic silicophosphate xerogels: A simple way to Brønsted or Lewis acid sites on porous supports

Ales Styskalik,^{a,b} David Skoda,^{a,b} Zdenek Moravec,^a Craig E. Barnes,^c and Jiri Pinkas^{*,a,b}

^a Masaryk University, Department of Chemistry, Kotlarska 2, CZ-61137 Brno, Czech Republic. E-mail: jpinkas@chemi.muni.cz

^b Masaryk University, CEITEC MU, Kamenice 5, CZ-62500 Brno, Czech Republic.

^c University of Tennessee, Department of Chemistry, Knoxville, TN 37996-1600, United States.

*Corresponding author. Phone: +420549496493; fax: +420549492443; E-mail address: jpinkas@chemi.muni.cz (J. Pinkas)

Experimental

Synthesis of parent xerogels

SiP. The parent silicophosphate xerogel was prepared under conditions optimized to give the maximum surface area.¹ In a typical reaction, $OP(OSiMe_3)_3$ (TTP) was added dropwise to a stirred solution of Si(OAc)₄ (molar ratio 4:3) in toluene to obtain a clear colorless gel (eq. 1). The gel was aged at 80 °C for one week and then dried under vacuum for two days providing an opaque xerogel (SiP). Characterization and spectral analysis data of **SiP** were same as reported previously.¹

IR (SiP, KBr, cm⁻¹) v: 490 w, 651 w (v SiC₃), 765 w (ρ_s SiCH₃), 853 vs (ρ_{as} SiCH₃), 1021 vs (ρ CH₃), 1050 vs (v Si-O-P), 1111 vs (v P-O-Si), 1230, 1258 vs (δ_s SiCH₃) 1300 sh (v P=O), 1374 w (δ_s CH₃), 1420 w (δ_{as} CH₃), 1540 s, 1721 w (v_{as} C=O), 1768 s (v_{as} C=O), 2907 vw (v_s CH₃), 2964 w (v_{as} CH₃).

¹³C CPMAS NMR (**SiP**, ppm) δ : -1.3 (POSiCH₃), 16.3 (CH₃COO bident), 20.4 (CH₃COO unident), 165.5 (CH₃COO unident), 190.6 (CH₃COO bident).

²⁹Si CPMAS NMR (**SiP**, ppm) δ : 23.6 (POSiMe₃), -112 (SiO₄), -162 (SiO₅), -195 (SiO₆), -214 (SiO₆). ³¹P MAS NMR (**SiP**, ppm) δ : -45 (P(OSi)₄). BET: 568 m² g⁻¹.

$$3 \operatorname{Si}(OAc)_4 + 4 \operatorname{OP}(OSiMe_3)_3 \rightarrow \operatorname{Si}_3P_4O_{16} + 12 \operatorname{CH}_3C(O)OSiMe_3$$
(1)

$$(AcO)_{3}Si-(CH_{2})_{2}-Si(OAc)_{3} + 2 OP(OSiMe_{3})_{3} \rightarrow OPO_{3}Si(CH_{2})_{2}SiO_{3}PO + 6 AcOSiMe_{3}$$
(2)

SiC2SiP. Similarly, the synthesis of hybrid silicophosphate xerogel was adopted from our previous work.² OP(OSiMe₃)₃ was added dropwise to a stirred solution of (AcO)₃SiCH₂CH₂Si(OAc)₃ in toluene (molar ratio 2:1). After the addition was complete, stirring was stopped and the reaction mixture was kept at 80 °C for one week. The reaction mixture provided a milky rigid gel overnight (eq. 2). The reaction was stopped after one week and dried under vacuum affording opaque xerogel (**SiC2SiP**). Characterization and spectral analysis data of **SiC2SiP** were same as reported previously.²

IR (**SiC2SiP**, KBr, cm⁻¹) v : v 490 m, 608 vw, 639 vw (v SiC₃), 763 m (ρ_s SiCH₃), 790 sh, 851 m (ρ_{as} SiCH₃), 1018 vs (v Si–O–P), 1175 m, 1231 w, 1259 m (δ_s SiCH₃), 1313 s (v P=O), 1374 vw (δ_s CH₃), 1406 vw, 1601 vw, 1754 m (v_{as} CH3COO unident), 2906 vw (v_s CH₃), 2963 w (v_{as} CH₃).

¹³C CPMAS NMR (**SiC2SiP**, ppm) δ : 1.2 (POSiCH₃), 3.7 shoulder (SiCH₂CH₂Si), 22.3 (CH₃COO unident), 170.6 (CH₃COO unident).

²⁹Si MAS NMR (**SiC2SiP**, ppm) δ : 26 (POSiMe₃), –65 (O₃SiCH₂CH₂SiO₃).

³¹P MAS NMR (**SiC2SiP**, ppm) δ : -37 (O=P(OSi)₃).

BET: 703 m² g⁻¹.

Chemical modification of silicophosphate xerogel surfaces.

Modification with H₂O. Characterization and analyses of SiPH1 xerogel.

IR (**SiPH1**, KBr, cm⁻¹) *v* : 505 m, 610 vw, 686 vw, 762 m (ρ_s SiCH₃), 851 vs (ρ_{as} SiCH₃), 1077 vs (*v* Si–O–P), 1095 vs (*v* P–O–Si), 1259 s (δ_s SiCH₃), 1376 vw (δ_s CH₃), 1419 vw (δ_{as} CH₃), 1548 w (v_{as} COO bident), 1716 w (v_{as} COO unident), 1768 w (v_{as} COO unident), 1656 w (δ OH), 2910 vw (v_s CH₃), 2965 w (v_{as} CH₃). ¹³C CPMAS NMR (**SiPH1**, ppm) δ : –3.9 (POSiCH₃), 12.5 (CH₃COO bident), 17.6 (CH₃COO unident), 163.0 (CH₃COO unident), 186.7 (CH₃COO bident). ²⁹Si CPMAS NMR (**SiPH1**, ppm) δ : 18.3 (POSiMe₃), –119 (SiO₄), –201 (SiO₆), –219 (SiO₆). ³¹P MAS NMR (**SiPH1**, ppm) δ : –49 (P(OSi)₄), –40 (P(OH)(OSi)₃). TG/DSC (air, 5 K min⁻¹): weight loss at 1000 °C: 37.7 %. BET: 279 m² g⁻¹. Characterization and analyses of SiPH3 xerogel.

IR (**SiPH3**, KBr, cm⁻¹) v: 495 m, 607 vw, 675 vw, 761 m (ρ_s SiCH₃), 853 vs (ρ_{as} SiCH₃), 1070 vs (v Si–O–P), 1261 s (δ_s SiCH₃), 1419 w (δ_{as} CH₃), 1669 w (δ OH), 2910 vw (v_s CH₃), 2966 w (v_{as} CH₃). TG/DSC (air, 5 K min⁻¹): weight loss at 1000 °C: 46.4 %. BET: nonporous

Characterization and analyses of SiC2SiPH1 xerogel.

IR (**SiC2SiPH1**, KBr, cm⁻¹) v : 496 m, 611 vw, 677 vw, 764 m (ρ_s SiCH₃), 851 s (ρ_{as} SiCH₃), 1025 vs (v Si–O–P), 1258 s (δ_s SiCH₃), 1413 w (δ_{as} CH₃), 1665 w (δ OH), 2900 vw (v_s CH₃), 2965 w (v_{as} CH₃). ¹³C CPMAS NMR (**SiC2SiPH1**, ppm) δ : 0.6 (SiCH₂CH₂Si + POSiCH₃). ²⁹Si CPMAS NMR (**SiC2SiPH1**, ppm) δ : 26.5 (POSiMe₃), –67 (CSiO₃). ³¹P MAS NMR (**SiC2SiPH1**, ppm) δ : –22 (O=P(OH)(OSi)₂), –9 (O=P(OH)₂(OSi)). TG/DSC (air, 5 K min⁻¹): weight loss at 1000 °C: 28.1 %. BET: 42 m² g⁻¹.

Modification with hexamethyldisiloxane. Characterization and analyses of **SiC2SiPHMDSO** xerogel. IR (**SiC2SiPHMDSO**, KBr, cm⁻¹) v : 190 m, 607 vw, 644 vw, 762 m (ρ_s SiCH₃), 850 s (ρ_{as} SiCH₃), 1032 vs (vSi–O–P), 1175 vw, 1258 s (δ_s SiCH₃), 1408 w (δ_{as} CH₃), 2906 vw (v_s CH₃), 2962 w (v_{as} CH₃). ²⁹Si CPMAS NMR (**SiC2SiPHMDSO**, ppm) δ : 24.0 (PO*Si*Me₃), 14.2 (SiO*Si*Me₃) –66 (C*Si*O₃). ³¹P MAS NMR (**SiC2SiPHMDSO**, ppm) δ : –30 (O=P(OSi)₃. TG/DSC (air, 5 K min⁻¹): weight loss at 1000 °C: 35.3 %. BET: 338 m² g⁻¹.

Modification with benzyltrichlorosilane. Characterization and analyses of SiPPhCH2Si xerogel.

IR (**SiPPhCH2Si**, KBr, cm⁻¹) v: 501 s, 650 w, 698 w, 762 m (ρ_s SiCH₃), 852 s (ρ_{as} SiCH₃), 1035 vs (v Si–O–P), 1124 vs (v P–O–Si), 1258 s (δ_s SiCH₃), 1373 w (δ_s CH₃), 1424 w (δ_{as} CH₃), 1541 w (v_{as} COO bident), 1719 w (v_{as} COO unident), 1765 w (v_{as} COO unident), 2907 vw (v_s CH₃), 2963 w (v_{as} CH₃), 3032 vw (v_s CH ar.), 3061 vw (v_{as} CH ar.).

¹³C CPMAS NMR (**SiPPhCH2Si**, ppm) δ : -4.5 (POSiCH₃), 12.8 (CH₃COO bident), 17.3 (CH₃COO unident + C₆H₅CH₂Si), 124.5 (C₆H₅CH₂Si), 163.3 (CH₃COO unident), 188.0 (CH₃COO bident). ²⁹Si CPMAS NMR (**SiPPhCH2Si**, ppm) δ : 27.0 (POSiMe₃), -41.5 (C₆H₅CH₂Si(Cl)O₂), -66 (C₆H₅CH₂SiO₃),-113 (SiO₄), -196 (SiO₆), -214 (SiO₆). ³¹P MAS NMR (**SiPPhCH2Si**, ppm) δ : -49 (P(OSi)₄.

TG/DSC (air, 5 K min⁻¹): weight loss at 1000 °C: 32.6 %.

BET: 385 m² g⁻¹.

Results

Fig. 1S: Comparison of ³¹P MAS NMR spectra of SiPH1 and SiPH2 samples.

Fig. 2S: IR spectrum of SiPH2 xerogel after pyridine adsorption.

Fig. 3S: ²⁹Si CPMAS NMR spectrum of SiPPhCH2Si xerogel.

Fig. 4S: ²⁹Si CPMAS NMR spectrum of SiPAl1 xerogel.

References

(1) Styskalik, A.; Skoda, D.; Moravec, Z.; Abbott, J. G.; Barnes, C. E.; Pinkas, J. *Microporous Mesoporous Mater.* **2014**, *197*, 204–212.

(2) Styskalik, A.; Skoda, D.; Moravec, Z.; Babiak, M.; Barnes, C. E.; Pinkas, J. *J. Mater. Chem. A* **2015**, *3* (14), 7477–7487.