ELECTRONIC SUPPLEMENTARY INFORMATION

Small heterocycles as highly luminescent building blocks in the solid state for organic synthesis

Fabiano da Silveira Santos,^a Natália Goedtel Medeiros,^a Ricardo Ferreira Affeldt,^a Rodrigo da Costa Duarte,^a Sidnei Moura,^b Fabiano Severo Rodembusch^{*}^a

Summary

1. Spectroscopic characterization	2
2. Photophysical data	20
3. Attempts to obtain the formyl derivatives	34

Fig. ESI2. ¹³C NMR spectra of **16** in CDCI₃.

Ч							тцп									тт
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
ppm	(f1)															

Fig. ESI3. ¹H NMR spectra of **17** in CDCl₃.

the state of the state of the state																_
																5
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	
ppm (†1)																

Fig. ESI4. ¹³C NMR spectra of **17** in CDCl₃.

Fig. ESI5. ¹H NMR spectra of **18** in dmso-*d6*.

Fig. ESI6. ¹³C NMR spectra of **18** in dmso-*d6*.

Fig. ESI7. ¹H NMR spectra of **19** in CDCl₃.

Fig. ESI8. ¹³C NMR spectra of **19** in CDCl₃.

Fig. ESI9. FTIR spectra of 16 and 19.

Fig. ESI11. ¹³C NMR spectra of **20** in CDCl₃.

Fig. ESI12. FTIR spectra of 17 and 20.

Fig. ESI14. ¹³C NMR spectra of 21 in DMSO-*d*₆.

Fig. ESI15. FTIR spectra of 18 and 21.

180.0777

180

Fig. ESI19. HRMS spectra of 19.

1

162.0540

160

120.0440

120

0.0

134.0600

140

4

208.0756

220

200

m/z

240

2. Photophysical data

Fig. ESI22. Normalized UV-Vis absorption spectra of non-methylated HBO.

Fig. ESI23. Normalized UV-Vis absorption spectra of non-methylated HBT.

Fig. ESI24. Normalized UV-Vis absorption spectra of non-methylated HBI.

Table ESI1. Photophysical data of the non-methylated HBO, HBT and HBI, where
λ_{abs} and λ_{em} are the absorption and emission maxima (nm), respectively, ϵ is the
molar extinction coefficient (10 ⁴ M ⁻¹ ·cm ⁻¹) and $\Delta\lambda_{ST}$ is the Stokes' shift (cm ⁻¹).

#	Solvent	λisha	£	Er	ol	Keto		
		a la s	Ū	λ_{em}	$\Delta\lambda_{ST}$	λ_{em}	$\Delta\lambda_{ST}$	
HBO		330	1.03	367	3055	490	9895	
HBT	1,4-Dioxane	342	0.95	369	2139	511	9670	
HBI		330	2.15	-	-	464	8751	
HBO		332	1.34	360	2343	482	9374	
HBT	Dichloromethane	344	0.42	381	2823	511	9500	
HBI		333	1.67	-	-	463	8432	
HBO		331	1.55	364	2739	479	9335	
HBT	Ethanol	335	1.20	375	3184	-	-	
HBI		330	2.10	355	2134	451	8130	
HBO		330	1.12	359	2448	482	9556	
HBT	Acetonitrile	342	1.58	372	2358	512	9709	
HBI		330	2.00	-	-	460	8564	

Fig. ESI25. Normalized UV-Vis absorption spectra of 16.

Fig. ESI26. Normalized UV-Vis absorption spectra of 17.

Fig. ESI27. Normalized UV-Vis absorption spectra of 18.

Table ESI2. Photophysical data of **16-18**, where λ_{abs} and λ_{em} are the absorption and emission maxima (nm), respectively, ϵ is the molar extinction coefficient (10⁴ M⁻¹·cm⁻¹), $\Delta\lambda_{ST}$ is the Stokes' shift (cm⁻¹) and QY is the total quantum yield.

#	Solvent	2	P	Er	lor	Keto		QY
	Contoint	- 453	Ū	λ_{em}	$\Delta\lambda_{ST}$	λ_{em}	$\Delta\lambda_{ST}$	u .
16		331	1.15	368	3038	498	10131	0.008
17	1,4-Dioxane	341	2.73	390	3684	529	10422	0.014
18		331	4.59	-	-	473	9070	0.368
16		335	1.10	382	3673	493	9567	0.057
17	Dichloromethane	346	1.21	384	2860	530	10034	0.024
18		336	1.21	-	-	466	8303	0.490
16		333	1.33	372	3148	490	9622	0.001
17	Ethanol	338	0.52	382	3408	510	9978	0.010
18		331	2.56	-	-	460	8472	0.469
16		331	1.19	-	-	497	10091	0.006
17	Acetonitrile	342	1.19	369	2139	470	7963	0.006
18		330	0.73	-	-	469	8981	0.313

Fig. ESI28. Normalized UV-Vis absorption spectra of 19.

Fig. ESI29. Normalized UV-Vis absorption spectra of 20.

Fig. ESI30. Normalized UV-Vis absorption spectra of 21.

Table ESI3. Photophysical data of **19-21**, where λ_{abs} and λ_{em} are the absorption and emission maxima (nm), respectively, ϵ is the molar extinction coefficient (10⁴ M⁻¹·cm⁻¹), $\Delta\lambda_{ST}$ is the Stokes' shift (cm⁻¹) and QY is the total quantum yield.

#	Solvent	2.	c	Er	าดไ	K	eto	OY
TT I	Convent	Vabs	c	λ_{em}	$\Delta \lambda_{\text{ST}}$	λ_{em}	$\Delta\lambda_{\text{ST}}$	Q.
19		335	1.10	382	3673	493	9567	0.057
20	1,4-Dioxane	346	1.21	384	2860	530	10034	0.024
21		336	1.21	-	-	466	8303	0.490
19		335	1.58	-	-	486	9275	0.097
20	Dichloromethane	347	0.91	-	-	520	9588	0.051
21		336	1.04	-	-	463	8164	0.535
19		334	1.37	422	6243	487	9406	0.076
20	Ethanol	343	1.52	445	6683	-	-	0.173
21		333	1.59	397	4841	457	8148	0.241
19		333	1.15	-	-	486	9454	0.152
20	Acetonitrile	345	1.35	448	6664	-	-	0.260
21		332	2.05	-	-	461	8429	0.062

Fig. ESI31. Normalized fluorescence emission spectra of non-methylated HBO.

Fig. ESI32. Normalized fluorescence emission spectra of non-methylated HBT.

Fig. ESI33. Normalized fluorescence emission spectra of non-methylated HBI.

Fig. ESI34. Normalized fluorescence emission spectra of 16.

Fig. ESI35. Normalized fluorescence emission spectra of 17.

Fig. ESI36. Normalized fluorescence emission spectra of 18.

Fig. ESI37. Normalized fluorescence emission spectra of 19.

Fig. ESI38. Normalized fluorescence emission spectra of 20.

Fig. ESI39. Normalized fluorescence emission spectra of 21.

	Solvent	~2	Pre-exp.	τ ₁	Bro ovp 2	τ2
#	Solvent	χ-	1	ns (%)	Pre-exp. 2	ns (%)
16		1.176	5.531	0.098 (100)	-	-
19	MeCN	1.048	0.955	0.429 (56)	0.743	1.642 (44)
HBO		1.099	4.423	0.209 (100)	-	-
16		1.148	6.976	0.164 (100)	-	-
19	DCM	1.135	0.630	2.393 (35)	1.166	0.826 (65)
HBO		1.137	4.469	0.332 (100)	-	-
17		1.049	0.315	1.688 (26)	0.896	0.256 (74)
20	MeCN	1.114	1.681	1.493 (100)	-	-
HBT		1.181	1.080	0.214 (100)	-	-
17		1.054	1.945	0.240 (100)	-	-
20	DCM	1.194	1.168	0.422 (59)	0.812	1.972 (41)
НВТ		1.192	3.496	0.225 (100)	-	-
18		1.195	0.430	2.573 (100)	-	-
21	MeCN	1.162	0.393	4.740 (43)	0.525	1.621 (57)
HBI		1.176	0.610	3.482 (100)	-	-
18		1.145	0.892	2.307 (100)	-	-
21	DCM	1.039	1.117	3.456 (100)	-	-
HBI		1.161	0.839	3.626 (100)	-	-

Table ESI4. Relevant data from the time resolved fluorescence spectroscopy from non-methylated derivatives (HBO, HBT and HBI), methylated **16-18** and formyled **20-21**.

Fig. ESI40. Normalized excitation spectra of **19**, where Normal and ESIPT is ascribed to the observation at shorter and longer wavelengths, respectively.

Fig. ESI41. Normalized excitation spectra of **20**, where Normal and ESIPT is ascribed to the observation at shorter and longer wavelengths, respectively.

Fig. ESI42. Normalized excitation spectra of 21, where Normal and ESIPT is ascribed to the observation at shorter and longer wavelengths, respectively.

3. Attempts to obtain the formyl derivatives

#1. Formylation using urotropine/acetic acid

(Chen, W. H.; Xing, Y.; Pang, Y., A highly selective pyrophosphate sensor based on ESIPT turn-on in water. Org. Lett. 2011, 13, 1362)

In a Schlenk vessel was added 0.178 mmol of previously synthesized compound **16**, 3 mL of toluene and 0.4 mmol of hexamethylenetetramine (2.4 equivalent) followed by 3 mL of acetic acid. The mixture was heated at reflux for 3 days. After 3 days, water was added and the mixture was refluxed for 10 min. The progress of a chemical reaction was monitored by TLC. It was not observed the formation of the product **19**, as well as the consumption of the reagents. Since it was not observed progress in this approach, the additional precursors (**17-18**) were not tested.

	HO X X HO X T T T	CH ₃ HMTA/C Tole 3 d	CH ₃ COOH	$HO CH_3$ $X = O$ HO CH_3 CHO			
#	Benzazole	НМТА	Toluene (mL)	Ácido acético (mL)	Reflux (days)		
1	40 mg (0.178 mmol)	60 mg (0.427 mmol)	3.0	3.0	3		

#2. Formylation using POCI₃

(Togo, H.; Ushijima, S., Metal-Free One-Pot Conversion of Electron-Rich Aromatics into Aromatic Nitriles. Synlett. 2010, 2010, 1067-1070. Liu, K.; Zhao, X.; Liu, Q.; Huo, J.; Fu, H.; Wang, Y., Turn on ESPT: novel salicylaldehyde based sensor for biological important fluoride sensing. J. Photochem. Photobiol. B Biol. 2014, 138, 75)

In a first step, in an ice bath the POCl₃ was added in DMF under stirring during 30 minutes at 0°C (see Time Step 1). In a second step, the precursor benzoxazole **16** was added and the mixture was stirred from 1.5-48h at 50-100°C (see Time Step 2). The progress of a chemical reaction was monitored by TLC.

To this mixture water was added. It was not observed the formation of the product **<u>19</u>**, as well as the consumption of the reagents. Since it was not observed progress in this approach, the additional precursors (**17-18**) were not tested.

	$ \begin{array}{c} \text{HC} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{16 X = 0} \end{array} $	CH ₃	$\begin{array}{c} POCl_3/DMF \\ \hline \\ \hline \\ Time/Temperature \\ \hline \\ 19 X = 0 \end{array}$				СН ₃ > СНО
#	Benzazole (mmol)	POCI ₃ (mmol)	DMF (mmol)	Time Step 1 (h)	Temp. (°C)	Time Step 2 (h)	Temp. (°C)
1	1.132	1.26	8.27	0.5	0	1.5	50
2	1.132	1.26	8.27	0.5	0	4.0	70
3	1.200	1.32	4.48	0.5	0	4.0	90
4	0.222	1.11	9.29	0.5	0	48	100

#3. Formylation using Trifluoroacetic acid

(Wang, J.; Li, Y.; Patel, N. G.; Zhang, G.; Zhou, D.; Pang, Y., A single molecular probe for multi-analyte (Cr(3)(+), Al(3)(+) and Fe(3)(+)) detection in aqueous medium and its biological application. Chem. Commun. 2014, 50, 12258.)

In a Schlenk vessel was added the previously synthesized compound **16**-**18** and hexamethylenetetramine (~10 equivalent) followed by 2.5 mL of trifluoroacetic acid. The mixture was heated at reflux for 3-5 h depending on the precursor (see Step 1). The progress of a chemical reaction was monitored by TLC. Water (2.5 mL) was added and the mixture was refluxed for 10-60 min (see Step 2). The reaction mixture was kept overnight at 5°C. The obtained precipitate was filtered in silica, washed with water, extracted in ethyl acetate. No additional purification procedure was needed. The products **19-21** were obtained in 91, 84 and 93% yields respectively.

#	Precursor	ЦМТА	Time Step	Time Step 2	Mass	Yield	
#	(mmol)		1 (h)	(min)	(mg)	(%)	
1	16 (0.218	1.85	3	10	50 /	Q1	
	mmol)	mmol	0	10	50.4	01	
0	17 (0.166	1.83	Λ	20	37.4	04	
2	mmol)	mmol	4	20		04	
•	18 (0.174	1.89	~	60	40.0	00	
3	mmol)	mmol	5	60	40.8	93	