Supporting information

Enhanced performance of dye-sensitized solar cells with Y-shaped

organic dyes containing di-anchoring groups

Hailang Jia,^a Kang Shen,^a Xuehai Ju,^b Mingdao Zhang,^a and Hegen Zheng^{*a}

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China

^bSchool of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

Synthesis Details

Synthesis of compound 2

A mixture of phenothiazine (10 g, 50.2 mmol), 2-bromo-9,9-dimethylfluorene (20.6 g, 75.3 mmol), NaOBu-t (9.7 g, 100.4 mmol), Pd(OAc)₂ (0.56 g, 2.5 mmol) and Pd(dppf)Cl₂ (0.7 g, 0.96 mmol) in dry toluene (150 mL) was refluxed for overnight under dinitrogen. The solvent was removed under vacuum. The residue was purified by column chromatography (silica gel) using PE/EA = 10/1 as eluent to give the compound **2** (15.2 g, 77%).¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 7.97 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 7.0 Hz, 1H), 7.49-7.52 (m, 2H), 7.38-7.44 (m, 3H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.86-6.88 (m, 4H), 6.31 (d, *J* = 7.0 Hz, 2H), 1.55 (s, 6H), MS (ESI): Calcd for C₂₇H₂₁NS, 391.13; found, 391.50.

Synthesis of compound 3

A mixture of Compound **2** (10.0 g, 25.5 mmol) in DMF (50 mL), then the NBS (9.5 g, 53.6 mmol) in a soultion of DMF (50 mL) was added dropwise for 30 min. The reaction mixture was stirred for overnight at room temperature. The reaction mixture was quenched with ice water and extracted with ethylacetate. The combined organic fractions were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (PE/EA = 10/1) to give the compound **3** (11.5 g, 82%). ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 7.98 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 7.51-7.52 (m, 1H), 7.43 (s, 3H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.14 (s, 2H), 6.96 (d, *J* = 9.0 Hz, 2H), 6.11 (d, *J* = 9.0 Hz, 2H), 1.55 (s, 6H).

Synthesis of compound 4

Under an nitrogen, compound **3** (10.0 g, 18.2 mmol), 2-thiopheneboronic acid (2.3 g, 18.2 mmol), K_2CO_3 (7.5 g, 54.6 mmol) and $Pd(PPh_3)_4$ (0.80 g, 0.71 mmol) were dissolved in 1, 4-dioxane (100 mL) and H_2O (20 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×100 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated

in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 10/1) to give the compound 4 (4.1 g, 41%). ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 7.99 (d, *J* = 8.0 Hz, 1H), 7.81-7.83 (m, 1H), 7.51-7.52 (m, 1H), 7.39-7.46 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.04-7.27 (m, 6H), 6.93 (d, *J* = 9.0 Hz, 1H), 6.23 (d, *J* = 3.0 Hz, 1H), 6.11 (d, *J* = 3.0 Hz, 1H), 1.56 (s, 6H), MS (ESI): Calcd for C₃₁H₂₂BrNS₂, 551.03; found, 551.67.

Synthesis of compound 5

Under an nitrogen, compound **4** (4.0 g, 7.2 mmol), 9,9-dimethyl-9H-fluoren-2-ylboronic acid, 2-thiopheneboronic acid (3.5 g, 14.5 mmol), K₂CO₃ (3.0 g, 21.7 mmol) and Pd(PPh₃)₄ (0.20 g, 0.18 mmol) were dissolved in 1, 4-dioxane (50 mL) and H₂O (10 mL). The mixture was heated under 90 °C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 8/1) to give the compound **5** (3.7 g, 77%). ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 8.01 (s, 1H), 7.85 (d, *J* = 7.0 Hz, 1H), 7.74-7.76 (m, 2H), 7.50-7.53 (m, 4H), 7.41-7.47 (m, 5H), 7.33-7.37 (m, 4H), 7.11-7.23 (m, 2H), 7.06 (s, 2H), 6.26 (s, 2H), 1.58 (s, 6H), 1.54 (s, 6H), MS (ESI): Calcd for C₄₆H₃₅NS₂, 665.22; found, 664.08.

Synthesis of compound 6

A mixture of Compound **5** (3.5 g, 5.3 mmol) in DMF (30 mL), then the NBS (1.0 g, 5.8 mmol) in a soultion of DMF (20 mL) was added dropwise for 30 min. The reaction mixture was stirred overnight at room temperature. The reaction mixture was quenched with ice water and extracted with ethylacetate. The combined organic fractions were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (PE/EA = 8/1) to give the compound **6** (2.5 g, 64%). ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 8.03 (s, 1H), 7.84 (d, *J* = 7.0 Hz, 1H), 7.73-7.77 (m, 2H), 7.40-7.56 (m, 8H), 7.30-7.38 (m, 4H), 7.05-7.26 (m, 3H), 7.00 (s, 2H), 6.32 (s, 1H), 1.58 (s,

6H), 1.54 (s, 6H), MS (ESI): Calcd for C₄₆H₃₄BrNS₂, 743.13; found, 744.17.

Synthesis of compound 7

A mixture of compound 6 (2.5 g, 3.4 mmol), trimethylsilylacetylene (0.66 g, 6.8 mmol) and CuI (0.13 g, 0.67 mmol) in THF (30 mL) and TEA (30 mL) was added Pd(PPh₃)₂Cl₂ (0.3 g, 0.42 mmol) under dinitrogen. The mixture was heated under 80°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×100 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 8/1). After evaporated, the residue was dissolved in MeOH (100 mL), and K₂CO₃ (2.3 g, 16.7 mmol) was then added. The reaction mixture was stirred overnight at room temperature. The mixture was quenched with H_2O and then extracted with CH_2Cl_2 . The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure to give the compound 7 (1.6 g, 70%). ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.99 (d, J = 8.0 Hz, 1H), 7.80-7.82 (m, 1H), 7.71-7.73 (m, 2H), 7.53 (s, 1H), 7.37-7.50 (m, 7H), 7.28-7.33 (m, 3H), 7.23 (d, J = 2.4 Hz, 1H), 7.18 (d, J = 4.0 Hz, 1H), 7.12-7.15 (m, 1H), 7.00-7.05 (m, 2H), 6.32 (d, J = 8.4 Hz, 1H), 6.22 (d, J = 8.4 Hz, 1H), 3.37 (s, 1H), 1.55 (s, 6H), 1.51 (s, 6H), MS (ESI): Calcd for C₄₈H₃₅NS₂, 689.22; found, 688.00.

Synthesis of dye ZJA1

The compound 7 (0.5 g, 0.72 mmol) and ethyl 4-iodobenzoate (0.4 g, 1.45 mmol) and CuI (28 mg, 0.14 mmol) in TEA (20 mL) and THF (10 mL) was added Pd(PPh₃)₂Cl₂ (0.10 g, 0.14 mmol) under dinitrogen. The mixture was heated under 80°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA=4/1). After evaporated, the residue was dissolved in EtOH (10 mL) and H₂O (10 mL), then added NaOH (0.15 g, 3.62 mmol). The mixture was heated under 90°C for overnight. The

reaction mixture was cooled to room temperature and the solvent was evaporated, the residue was acidified with HCl, then filtered and recrystallization from MeOH/Ether to give dye **ZJA1** (0.40 g, 68%). ¹H NMR (DMSO- d_6 , 300 MHz) $\delta_{\rm H}$ 13.19 (s, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.1 Hz, 3H), 7.82-7.85 (m, 3H), 7.74 (s, 1H), 7.62-7.68 (m, 3H), 7.53-7.59 (m, 3H), 7.40-7.47 (m, 6H), 7.31-7.36 (m, 3H), 7.24-7.27 (m, 1H), 6.25 (d, J = 8.4 Hz, 1H), 6.19 (d, J = 8.4 Hz, 1H), 1.52 (s, 6H), 1.47 (s, 6H); ¹³CNMR (DMSO- d_6 , 125 MHz) $\delta_{\rm C}$ 167.11, 157.14, 154.56, 154.34, 154.08, 138.22, 138.14, 138.07, 135.23, 131.63, 130.06, 127.77, 127.51, 125.54, 125.40, 124.96, 123.93, 123.42, 123.20, 123.02, 120.94, 120.86, 120.60, 93.63, 86.03, 47.42, 47.03, 27.30, 27.09; MS (ESI): Calcd for C₅₅H₃₉NO₂S₂, 809.24; found, 808.08.

Synthesis of compound 8

The compound 7 (1.00 g, 1.45 mmol), tribromobenzene (0.91 g, 2.90 mmol) and CuI (55 mg, 0.29 mmol) in TEA (20 mL) and THF (10 mL) was added Pd(PPh₃)₂Cl₂ (0.10 g, 0.14 mmol) under dinitrogen. The mixture was heated under 80 °C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×30 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 4/1) to give the compound **8** (0.80 g, 60%). ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ 8.02 (d, *J* = 7.8 Hz, 1H), 7.82-7.85 (m, 1H), 7.73-7.76 (m, 2H), 7.63 (t, *J* = 1.8 Hz, 1H), 7.59 (d, *J* = 1.8 Hz, 1H), 7.49-7.55 (m, 4H), 7.38-7.47 (m, 5H), 7.30-7.36 (m, 4H), 7.24 (d, *J* = 3.9 Hz, 1H), 7.15-7.18 (m, 1H), 7.00-7.09 (m, 2H), 6.35 (d, *J* = 8.7 Hz, 1H), 6.25 (d, *J* = 8.7 Hz, 1H), 1.57 (s, 6H), 1.53 (s, 6H); MS (ESI): Calcd for C₅₄H₃₇Br₂NS₂, 923.07; found, 922.25.

Synthesis of dye ZJA2

Under an nitrogen, compound **8** (0.5 g, 0.54 mmol), 3-methoxycarbonylphenylboronic acid (0.29 g, 1.62 mmol), K_2CO_3 (0.3 g, 2.16 mmol) and $Pd(PPh_3)_4$ (0.10 g, 0.09 mmol) were dissolved in 1, 4-dioxane (20 mL) and H_2O (4 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc $(3 \times 20 \text{ mL})$. The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 4/1). After evaporated, the residue was dissolved in EtOH (10 mL) and H₂O (10 mL), then added NaOH (0.17 g, 4.33 mmol). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the residue was acidified with HCl, then filtered and recrystallization from MeOH/Ether to give dye ZJA2 (0.30 g, 55%). ¹H NMR (DMSO- d_6 , 300 MHz) $\delta_{\rm H}$ 8.28 (s, 2H), 8.16 (d, J = 8.1 Hz, 1H), 8.06 (d, J = 7.8Hz, 2H), 7.92-7.99 (m, 5H), 7.86 (s, 1H), 7.78-7.82 (m, 3H), 7.72 (s, 1H), 7.56-7.63 (m, 4H), 7.50-7.53 (m, 3H), 7.43-7.45 (m, 3H), 7.38-7.40 (m, 2H), 7.29-7.33 (m, 3H), 7.21-7.25 (m, 1H), 6.26 (d, J = 8.4 Hz, 1H), 6.18 (d, J = 8.4 Hz, 1H), 1.50 (s, 6H), 1.45 (s, 6H); ¹³CNMR (DMSO-*d*₆, 125 MHz) δ_C 167.82, 157.12, 154.56, 154.33, 154.07, 141.31, 139.71, 138.65, 138.13, 138.06, 131.87, 129.81, 129.34, 129.09, 128.15, 127.75, 127.51, 125.38, 124.94, 123.19, 120.93, 120.83, 120.58, 94.05, 84.05, 47.41, 47.02, 27.29, 27.08; MS (ESI): Calcd for C₆₈H₄₇NO₄S₂, 1005.29; found, 1004.50.

Synthesis of dye ZJA3

Under an nitrogen, compound **8** (0.5 g, 0.54 mmol), 3-pyridylboronic acid (0.20 g, 1.62 mmol), K₂CO₃ (0.3 g, 2.16 mmol) and Pd(PPh₃)₄ (0.10 g, 0.09 mmol) were dissolved in 1, 4-dioxane (20 mL) and H₂O (4 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM/MeOH = 30/1) to give dye **ZJA3** (0.25 g, 50%). ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ 8.94 (s, 2H), 8.69 (s, 2H), 7.97-8.02 (m, 3H), 7.82-7.84 (m, 1H), 7.76-7.78 (m, 2H), 7.72-7.76 (m, 3H), 7.65-7.69 (m, 2H), 7.55-7.58 (m, 2H), 7.51-7.52 (m, 2H), 7.48-7.49 (m, 2H), 7.40-7.46 (m, 5H), 7.32-7.35 (m, 3H), 7.28-7.29 (m, 2H), 7.15-7.18 (m, 1H), 7.07-7.11 (m, 2H), 6.35 (d, *J* = 8.4 Hz, 1H), 6.28 (d, *J* = 8.4 Hz, 1H), 1.57 (s,

6H), 1.53 (s, 6H); ¹³CNMR (CDCl₃, 125 MHz) δ_{C} 156.89, 154.30, 154.03, 153.82, 149.05, 148.18, 145.55, 144.14, 143.00, 139.67, 139.28, 139.09, 138.82, 138.31, 138.11, 135.63, 134.65, 133.64, 132.09, 129.52, 128.64, 128.54, 127.21, 127.02, 125.33, 125.06, 123.78, 122.58, 120.56, 120.28, 119.99, 116.12, 115.90, 92.87, 84.46, 47.26, 46.91, 29.70, 27.22; MS (ESI): Calcd for C₆₄H₄₅N₃S₂, 919.39; found, 920.58.

Fig. S1 Emission spectra of ZJA1, ZJA2 and ZJA3 in DMF

Fig. S2 Cyclic voltammogram of **ZJA1**, **ZJA2** and **ZJA3** in DMF (0.1 M TBAPF₆, glassy carbon electrode as working electrode, Pt as counter electrode, Ag/Ag^+ as reference electrode, the ferrocene (+0.63 V vs. NHE) as an external reference, scan rate: 100 mV s⁻¹)

Fig. S3 FTIR spectra of the dye powders and dyes adsorbed on TiO_2 for (a) ZJA1, (b) ZJA2 and (c) ZJA3.

Fig. S4 Light-Harvesting Efficiency of **ZJA1**, **ZJA2** and **ZJA3** on 12 μ m porous TiO₂ nanoparticle films (LHE (λ)=1-10^{-Abs} (λ), where Abs (λ) is the optical absorbance of the dye adsorbed to TiO₂)

Fig. S5 Comparison of emission quenching ZJA1, ZJA2 and ZJA3 loaded on TiO₂ and Al₂O₃.

Fig. S6 The geometry optimized ground state molecular structure of dye ZJA2.

¹H NMR

Fig. S7 ¹H NMR (CDCl₃, 500 MHz) of compound 2

Fig. S8 $^1\mathrm{H}$ NMR (CDCl_3, 500 MHz) of compound 3

Fig. S9 1 H NMR (CDCl₃, 500 MHz) of compound 4

Fig. S10 ¹H NMR (CDCl₃, 500 MHz) of compound 5

Fig. S11 ¹H NMR (CDCl₃, 500 MHz) of compound 6

Fig. S12 ¹H NMR (CDCl₃, 400 MHz) of compound 7

Fig. S13 ¹H NMR (CDCl₃, 300 MHz) of compound 8

Fig. S14 ¹H NMR (DMSO- d_6 , 300 MHz) of ZJA1

Fig. S15 ¹H NMR (DMSO-*d*₆, 300 MHz) of **ZJA2**

Fig. S16 ¹H NMR (CDCl₃, 300 MHz) of ZJA3

Fig. S17 13 C NMR (DMSO- d_6 , 125 MHz) of ZJA1

Fig. S18 ¹³C NMR (DMSO-*d*₆, 125 MHz) of **ZJA2**

Fig. S19 ¹³C NMR (CDCl₃, 125 MHz) of ZJA3