Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

> Electronic Supplementary Information for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Towards efficient blue emission cationic Ir(III) complex with azole-type ancillary ligands: a joint theoretical and experimental study

Shao-Fen Huang, Hai-Zhu Sun, Guo-Gang Shan*, Yong Wu, Min Zhang* and Zhong-Min Su*

Institute of Functional Material Chemistry, faculty of chemistry, Northeast Normal University

Jilin 130024, People's Republic of China.

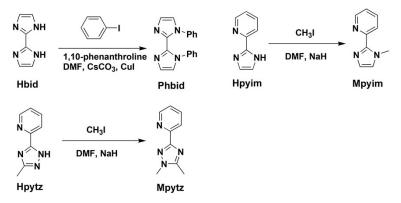

E-mail: <u>shangg187@nenu.edu.cn</u> (G. G. Shan), <u>mzhang@nenu.edu.cn</u> (M. Zhang), <u>zmsu@nenu.edu.cn</u> (Z. M. Su)

Table of Contents

1. Synthesis and Characterization of the ligands used in this work	S2
2. Crystal data and structure refinements for complexes 1-4	S3–S4
3. Photoluminescent spectra of complexes 1–4 at 77 K	S4
4. Calculated data	S5–S8
5. Cyclic voltammograms	S 8

Synthesis of ligands.

The precursors Hbid, Hpyim and Hpytz of ligands and ligand bpyim were readily synthesized according to early reported literature. All reactions were carried out under nitrogen protection.

Scheme S1. The synthetic routes of ancillary ligands Phbid, Mpyim and Mpytz.

Phbid

A mixture of Hbid (0.54 g, 4 mmol), iodobenzene (2.04 g, 10 mmol), phenanthroline (0.84 g, 4 mmol), CsCO₃ (3.30 g, 10 mmol) and CuI (0.40 g, 2 mmol) in DMF (30 mL) was heated to reflux for 24 h. Solvent was removed by distillation under reduced pressure. The resulted residue was extracted by CH₂Cl₂ and organic layer was dried by anhydrous Na₂SO₄. The further purification was performed by silica gel column chromatography using ethyl acetate as eluent to afford ligand **Phibid** (54.5%). ¹H NMR (CDCl₃, 500 MHz) δ (ppm): 7.26 (d, *J* = 1.5 Hz, 2H), 7.22–7.17 (m, 2H), 7.15–7.14 (m, 4H), 7.06 (d, *J* = 1.0 Hz, 2H), 6.72–6.70 (m, 4H).

Mpyim

Hpyim (0.98 g, 4 mmol) and NaH (0.40 g, 16 mmol) were dissolved in DMF (10 mL) and stirred at room temperature for 1 h, followed by addition of CH₃I (0.86 g, 6 mmol) dropwise. The reaction mixture was stirred an room temperature for 24 h. After reaction 30 mL of water was added. Then the solution was extracted with dichloromethane (20 mL) for three times. The organic layers were collected and dried with anhydrous Na₂SO₄. The further purification was performed by silica gel column chromatography using ethyl acetate and CH₂Cl₂ as eluent to afford ligand **Mpyim** (50.3%). ¹H NMR (CDCl₃, 500 MHz) δ (ppm): 8.57 (d, *J* = 4.5 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.76–7.72 (m, 1H),

7.21–7.19 (m, 1H), 7.11 (s, 1H), 6.96 (s, 1H), 4.11 (s, 1H).

Mpytz

Hpytz (0.64 g, 4mmol) and NaH (0.40 g, 16 mmol)were dissolved in DMF (10 mL) and stirred at room temperature for 1 h . Then CH₃I (0.86 g, 3 mmol) was added dropwise under vigorously stir. After reaction 30 mL of water was added. Then the solution was extracted with CH₂Cl₂ (20 mL) for three times. The organic layers were collected and dried with anhydrous Na₂SO₄. The further purification was performed by silica gel column chromatography using petroleum ether : ethyl acetate 3:1 then changed to CH₂Cl₂ : CH₃OH as eluent to afford ligand **Mpytz** (44.5%). ¹H NMR (CDCl₃, 500 MHz) δ (ppm): 8.71 (d, *J* = 4.5 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.78–7.75 (m, 1H), 7.30–7.27 (m, 1H), 3.90 (s, 3H), 2.53 (s, 3H).

Complex	1	2	4
Formula	$C_{74}H_{54}F_{20}Ir_2N_{16}$	C ₃₂ H ₂₁ F ₁₀ IrN ₇ P	$C_{41}H_{41}O_4F_{10}Ir$
Tonnula	O_2P_2	C3211211 10111171	N ₈ PCl ₂
Formula weight	2025.67	916.73	997.07
Crystal system	Monclinic	Monclinic	Triclinic
Space group	C2/c	P21/n	P-1
a/Å	22.115(5)	9.8440(4)	11.2530(8)
b/Å	17.117(5)	24.2180(11)	11.5830(8)
c/Å	23.322(5)	15.7880(7)	15.2630(11)
$lpha/^{\circ}$	90	90	103.2960(13)
$eta / ^{\circ}$	109.896(3)	101.8570(14)	99.1430(15)
$\gamma/^{\circ}$	90	90	109.7520(14
V/Å ³	8301(3)	3683.6(3)	1760.3(2)
Ζ	4	4	2
Density(calculated)/Mg m ⁻³	1.621	1.653	1.881
Absorption coefficient /mm ⁻	3.340	3.751	4.154
F(000)	3960	1776	966

Table S1. Crystal data and structure refinements for complexes 1, 2 and 4.

Electronic Supplementary Information for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry 2016

Observed reflection/unique	23708 / 8837	64548 / 7277	10207/ 6197		
R _{int}	0.0582	0.0774	0.0386		
Goodness-of-fit on F ²	1.028	1.078	1.041		
R_1^a , $wR_2^b[I>2\sigma(I)]$	0.0499, 0.1503	0.0819, 0.2399	0.0419, 0.0830		
R_1 , wR_2 (all data)	0.0953, 0.1746	0.1022, 0.2680	0.0616, 0.0908		
${}^{a}R_{1} = \Sigma F_{o} - Fc / \Sigma F_{o} . {}^{b}wR_{2} = \Sigma w(Fo 2 - Fc 2) / \Sigma w(F_{o}^{2})^{2} ^{1/2}.$					

 Table S2. Selected bond distances and angles for complexes 1, 2 and 4.

Complex	1	2	4
L. C	2.007(9)	2.023(11)	2.000(2)
$Ir-C_{C^N}$	2.014(9)	2.018(12)	2.020(3)
Ir N	2.018(8)	2.029(10)	2.016(2)
Ir–N _{C^N}	2.026(8)	2.037(11)	2.026(2)
Ir–N _{N^N}	2.138(7)	2.112(10)	2.153(2)
	2.141(7)	2.160(10)	2.161(2)
N_{C^N} -Ir- N_{C^N}	172.0(3)	172.7(4)	172.80(9)
	80.7(4)	81.0(5)	80.53(9)
C_{C^N} -Ir- N_{C^N}	80.3(3)	80.4(5)	79.74(10)
$N_{N^{\wedge}N}$ –Ir– $N_{N^{\wedge}N}$	76.2(3)	76.0(4)	75.37(8)

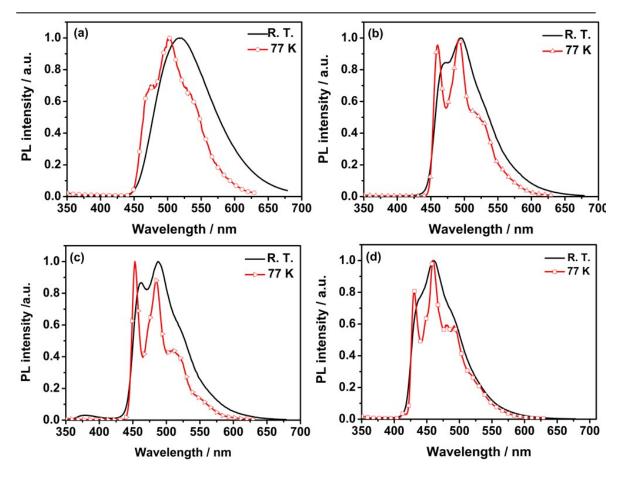
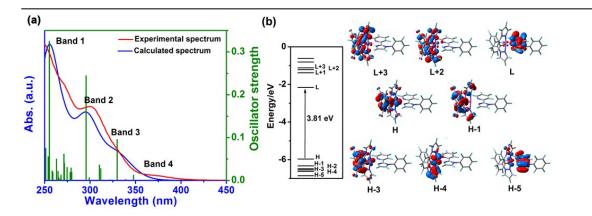



Fig. S1. Photoluminescent spectra of complexes 1–4 at room temperature and 77 K.

-					
2	Excited state	eV/nm	f	Major contributions ^a	Character ^b
Band 1	S26	4.86/255	0.32	H-3→L+2 (24%)	IL
				H-4→L+3 (14%)	IL/LLCT/MLCT
				H-1→L+3 (15%)	IL
Band 2	S 9	4.19/296	0.24	H-5→L (84%)	IL
Band 3	S4	3.76/330	0.01	H-4→L (88%)	LLCT/MLCT
Band 4	S 1	3.14/394	0.0001	H→L (98%)	MLCT/LLCT

Table S3. Calculated excited energies, dominant orbital excitations, and oscillatorstrength (f) of complex 2 in CH₃CN solution from TD-DFT calculation.

^{*a*} H and L denote HOMO and LUMO, respectively. ^{*b*} MLCT, LLCT and IL denote metalto-ligand charge transfer, ligand-to-ligand and ligand centered charge transfer, respectively.

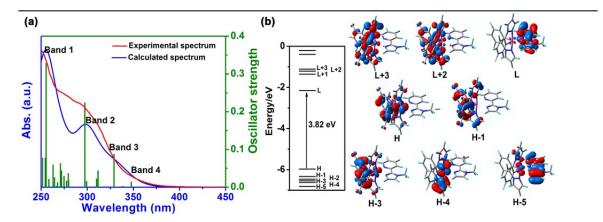


Fig. S2. (a)TD-DFT simulated and experimental absorption spectra of complex **2** in CH₃CN. (b) The shape of frontier electronic levels and selected frontier molecular orbitals involved in crucial electronic excitations of complexes **2**. H and L denote HOMO and LUMO, respectively.

3	Excited state	eV/nm	f	Major contributions ^a	Character ^b
Band 1	S23	4.85/255	0.32	H-4→L+3 (14%)	IL/MLCT
				H-3→L+2 (24%)	IL/MLCT
				H-1→L+3 (16%)	IL
Band 2	S9	4.17/297	0.22	H-5→L (81%)	IL
Band 3	S4	3.77/329	0.09	H-4→L (87%)	LLCT/MLCT
Band 4	S2	3.57/348	0.01	H-2→L (91%)	LLCT/MLCT/IL
	S1	3.15/394	0	H→L (98%)	MLCT/LLCT
^a H and L denote HOMO and LUMO, respectively. ^b MLCT, LLCT and IL denote metal-					

Table S4. Calculated excited energies, dominant orbital excitations, and oscillator strength (f) of complex **3** in CH₃CN solution from TD-DFT calculation.

^{*a*} H and L denote HOMO and LUMO, respectively. ^{*b*} MLCT, LLCT and IL denote metalto-ligand charge transfer, ligand-to-ligand and ligand centered charge transfer, respectively.

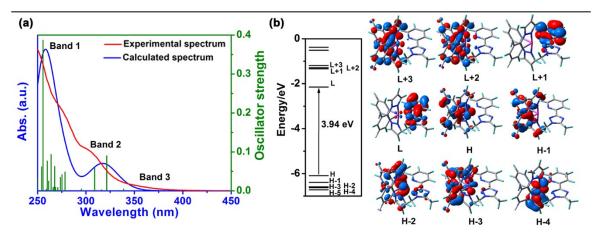


Fig. S3. TD-DFT simulated and experimental absorption spectra of complex **3** in CH₃CN. (b) The shape of frontier electronic levels and selected frontier molecular orbitals involved in crucial electronic excitations of complexes **3**. H and L denote HOMO and LUMO, respectively.

strength (f) of complex 4 in CH_3CN solution from TD-DFT calculation.					
Excited state	eV/nm	f	Major contributions ^a	Character ^b	
S23	4.85/256	0.38	H-3→L+2 (16%)	LLCT/MLCT	
			H-1→L+3 (18%)	IL	
			H-4→L+3 (11%)	IL/LLCT/MLCT	
S4	3.86/321	0.09	H-4→L (88%)	MLCT/LLCT	
S2	3.66/338	0.001	H-2→L (73%)	MLCT/LLCT	
			H-3→L (20%)	MLCT/LLCT	
S1	3.26/380	0	H→L (97%)	MLCT/LLCT	
	Excited state S23 S4 S2	Excited state eV/nm S23 4.85/256 S4 3.86/321 S2 3.66/338	Excited state eV/nm f S23 $4.85/256$ 0.38 S4 $3.86/321$ 0.09 S2 $3.66/338$ 0.001	Excited state eV/nm f Major contributions ^a S23 $4.85/256$ 0.38 $H-3 \rightarrow L+2$ (16%) $H-1 \rightarrow L+3$ (18%) $H-4 \rightarrow L+3$ (11%) S4 $3.86/321$ 0.09 S2 $3.66/338$ 0.001 H-2 $\rightarrow L$ (73%) $H-3 \rightarrow L$ (20%)	

Table S5. Calculated excited energies, dominant orbital excitations, and oscillator strength (f) of complex 4 in CH₃CN solution from TD-DFT calculation.

^{*a*} H and L denote HOMO and LUMO, respectively. ^{*b*} MLCT, LLCT and IL denote metalto-ligand charge transfer, ligand-to-ligand and ligand centered charge transfer, respectively. Electronic Supplementary Information for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry 2016

Fig. S4. TD-DFT simulated and experimental absorption spectra of complex 4 in CH₃CN. (b) The shape of frontier electronic levels and selected frontier molecular orbitals involved in crucial electronic excitations of complexes 4. H and L denote HOMO and LUMO, respectively.

Complex	State	eV	f	Assignment ^a	Character ^b
1	T_1	2.01	0.00	H-1→L (58%)	³ MLCT/ ³ LLCT
				H→L (38%)	³ MLCT/ ³ LLCT
2	T_1	2.30	0.00	H-2→L (73%)	³ MLCT/ ³ LLCT/ ³ LC
				H-5→L (12%)	³ LC
3	T_1	2.38	0.00	H-2→L (71%)	³ MLCT/ ³ LLCT/ ³ LC
				H-5→L (14%)	³ LC
4	T_1	2.69	0.00	H→L+1 (86%)	³ MLCT/ ³ LC

Table S6. Calculated triplet states of complexes 1–4 by a TD-DFT approach.

^{*a*} H and L denote HOMO and LUMO, respectively. ^{*b*} MLCT, LLCT and LC denote metalto-ligand charge transfer, ligand-to-ligand and ligand centered charge transfer, respectively. Electronic Supplementary Information for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry 2016

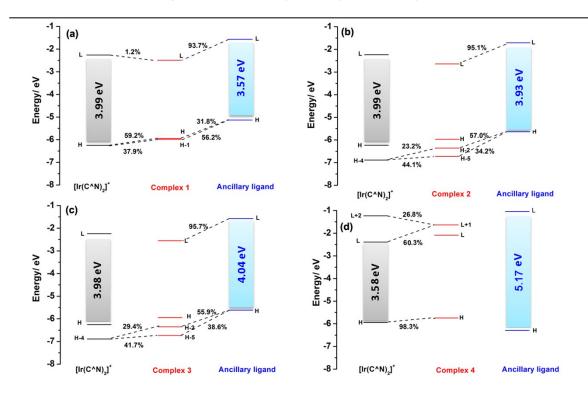


Fig. S5. Molecular orbital correlation diagrams for complexes1-4.

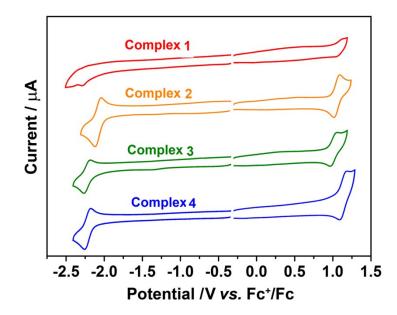


Fig. S6. Cyclic voltammograms of the cationic Ir(III) complexes 1-4 in CH₃CN solutions. Potentials were recorded versus Fc⁺/Fc (Fc is ferrocene).