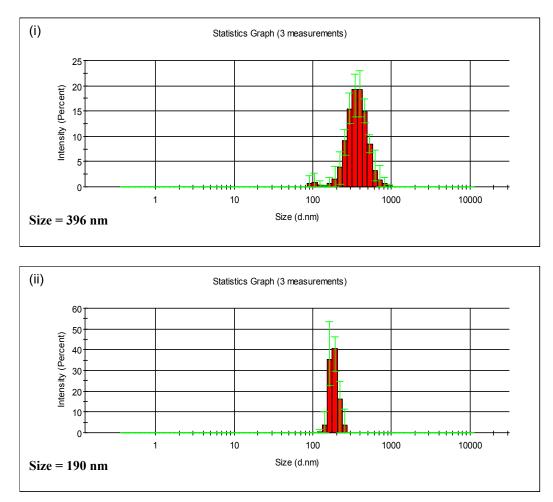
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information

"Not Quenched" Aggregates of Triphenylene Derivative for the Sensitive

Detection of Trinitrotoluene in Aqueous Medium


Harshveer Arora, Subhamay Pramanik and Manoj Kumar, Vandana Bhalla*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India. E-mail: <u>vanmanan@yahoo.co.in</u>

Page Contents

- **S3** DLS measurements of derivative **4** in (i) H₂O:THF (3:7), (ii) H₂O:THF (1:1) mixture.
- **S4** DLS measurements of derivative **4** in (i) H₂O:THF (7:3), (ii) H₂O:THF (9:1) mixture.
- **S5** Plot for detection limit of derivative 4 in H_2O :THF (9:1) mixture with TNT.
- S6 UV-vis spectrum of derivative 4 with TNT and Spectral overlap with TNT and) Fluorescence spectrum of derivative 4 (10 μ M) upon the addition of 2,4,6trinitrotoluene (TNT) from 1 to 1.6 μ M in H₂O:DMSO (9:1) mixture.
- S7 ¹H NMR of derivative 4 upon the addition of TNT and Cyclic Voltammogram of derivative 4.
- **S8** Fluorescence spectrum of derivative **4** with TNT in pure THF and Schematic representation of fluorescent quenching with TNT.
- **S9** Vapour phase detection of TNT with aggregates of derivative **4**.

- **S10** ¹H NMR of derivative **4**.
- **S11** ¹³C NMR of derivative **4**.
- **S12** MALDI-TOF mass spectrum of derivative **4**.
- **S13** FT-IR spectrum of derivative **4**.
- **S14** Table of comparison of present manuscript with the literature reports.

Fig. S1 Dynamic light scattering (DLS) results showing the variation of particle size (diameter) of derivative 4 in (i) H_2O :THF (3:7), (ii) H_2O :THF (1:1) mixture respectively.

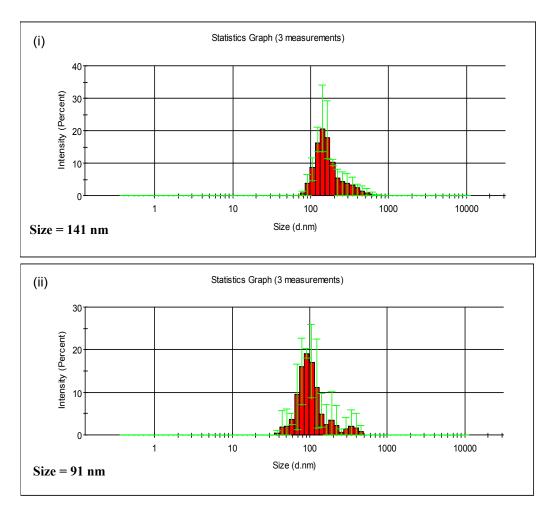
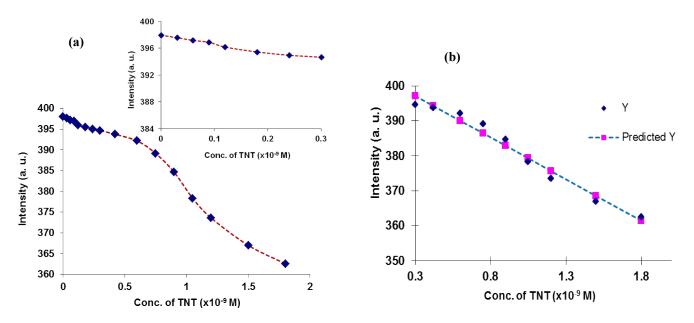



Fig. S2 Dynamic light scattering (DLS) results showing the variation of particle size (diameter) of derivative 4 in (i) H_2O :THF (7:3) and (ii) H_2O :THF (9:1) mixture respectively.

Fig. S3 (a) Showing the fluorescence intensity of compound **4**, inset showing the linear plot at lower concentration 0- 0.3×10^{-9} M and (b) Calibrated curve showing the fluorescence intensity of compound **4** at 417 nm as a function of TNT concentration in H₂O/THF (9:1, v/v) buffered with HEPES, pH =7.05, λ_{ex} = 319 nm.

Multiple R = 0.9864, $R^2 = 0.9731$, Standard deviation = 0.008, Observation = 10, Intercept = 404.305, Slope = 23.83×10⁹

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor 4 without TNT was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

 $DL = 3 \times SD/S$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

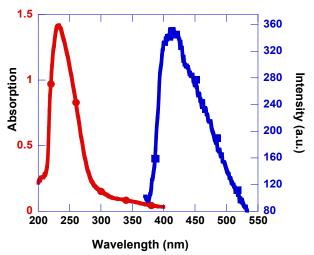
 $S = 23.83 \times 10^9$, and SD value is 0.008

Thus using the formula we get the Detection Limit (DL) = $3 \times 0.008/23.83 \times 10^9 = 1.007 \times 10^{-12}$ mol/L = 1.007 pM = 228.59×10^{-12} g/L = 228.59 pg/L = 228.6 ppq

i.e., probe **4** can detect TNT in this minimum concentration through fluorescence method.

Multiple R = 0.9864, $R^2 = 0.9731$, Standard deviation = 0.0084, Observation = 10, Intercept = 404.305, Slope = 23.83×10⁹

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of 10 separate solution of receptor **4** without TNT was measured by 10 times and the standard deviation of blank measurements was determined to 0.0084. The detection limit is then calculated with the following equation:


 $DL = 3 \times SD/S$

Where SD is the standard deviation of 10 separate blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

 $S = 23.83 \times 10^9$, and SD value is 0.0084

Thus using the formula we get the Detection Limit (DL) = $3 \times 0.0084/23.83 \times 10^9$ = 1.057×10^{-12} mol/L = $1.057 \text{ pM} = 240 \times 10^{-12} \text{ g/L} = 240 \text{ pg/L} = 240 \text{ ppq}.$

Fig. S4 Spectral overlap of absorption spectrum of 2,4,6-Trinitrotoluene (red line) and emission spectrum (blue line) of derivative **4**

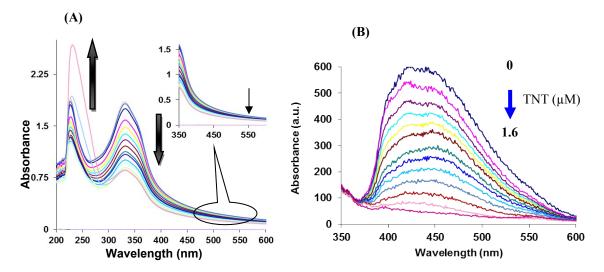
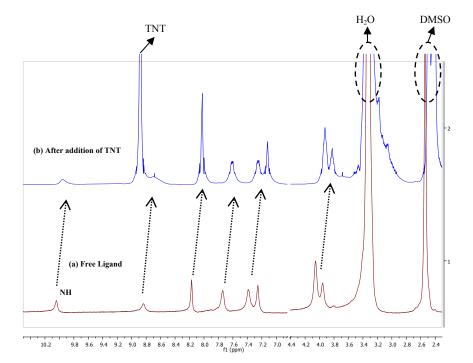



Fig. S5 (A) UV-Vis spectrum of derivative 4 (10 μ M) upon the addition of 15 μ M of TNT. Inset shows the trail in the absorption spectrum; (B) Fluorescence spectrum of derivative 4 (10 μ M) upon the addition of 2,4,6-trinitrotoluene (TNT) from 1 to 1.6 μ M in H₂O:DMSO (9:1) mixture.

Fig. S6 Partial ¹H NMR of derivative **4** (600 μ l of 10⁻² M) (a) before and (b) after the addition of TNT (10 μ l of 10⁻² M) in DMSO-d₆:D₂O (8:2).

Fig. S7 Cyclic Voltammogram of derivative 4 (1×10^{-3} M) in dichloromethane.

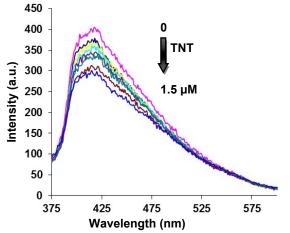


Fig. S8 Fluorescence emission spectrum of derivative 4 (10 μ M) upon the addition of 1.5 μ M of TNT in pure THF.

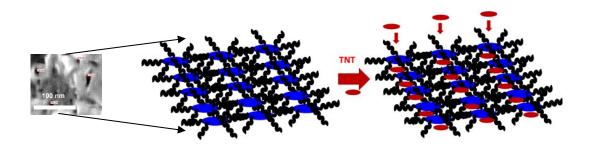


Fig. S9 Schematic representation of sensing of TNT by aggregates of derivative 4

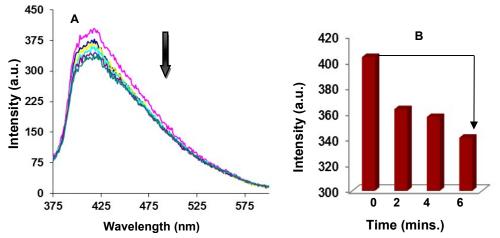
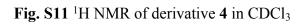
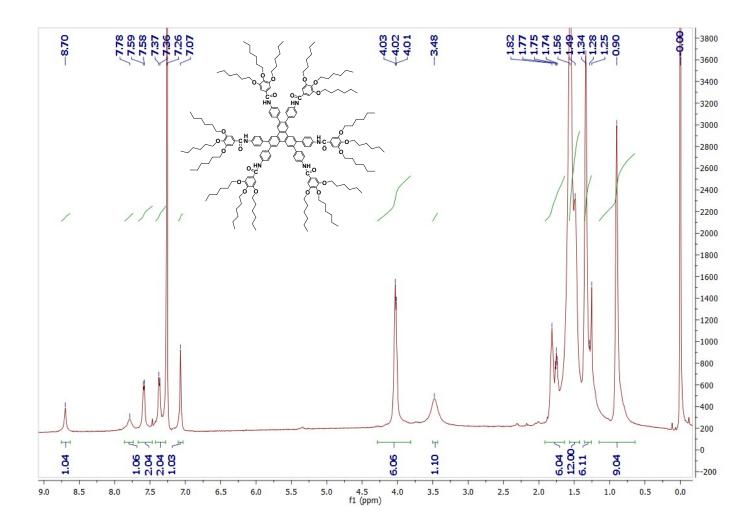
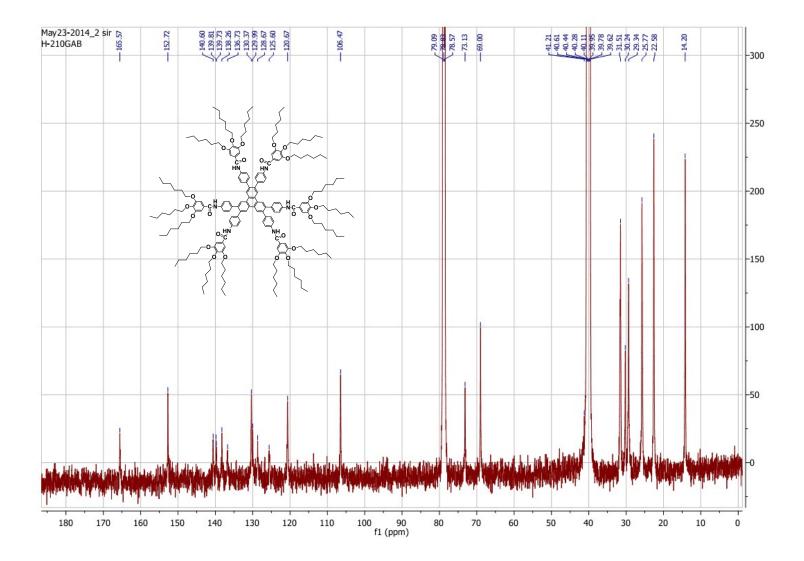





Fig. S10 (A) Fluorescence emission spectrum of derivative 4 (10 μ M) in H₂O:THF (9:1) upon exposing it to vapors of 2,4,6-trinitrotoluene (B) Bar diagram showing the change in emission intensity of derivative 7 with time upon exposure to the vapours of TNT.

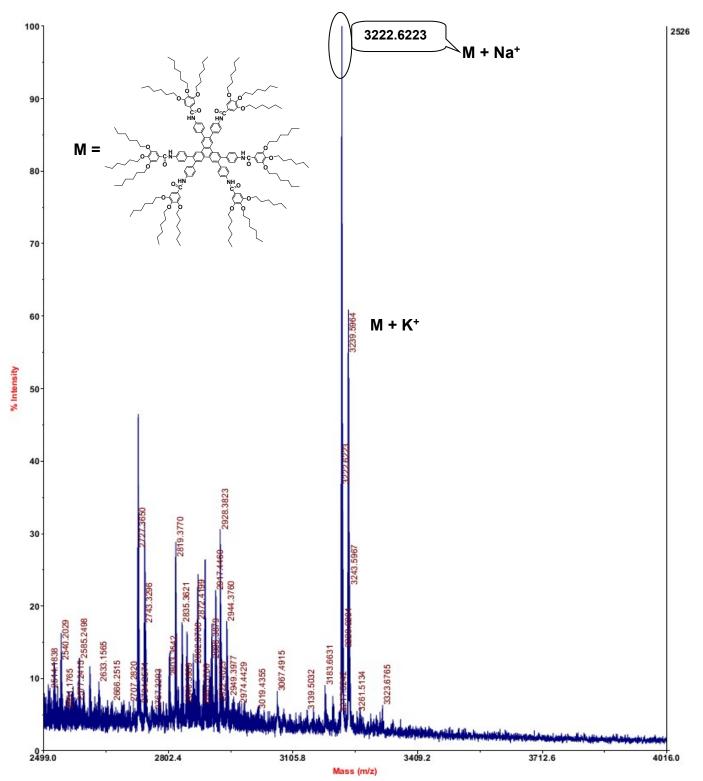


Fig. S13 MALDI-TOF mass spectrum of derivative 4

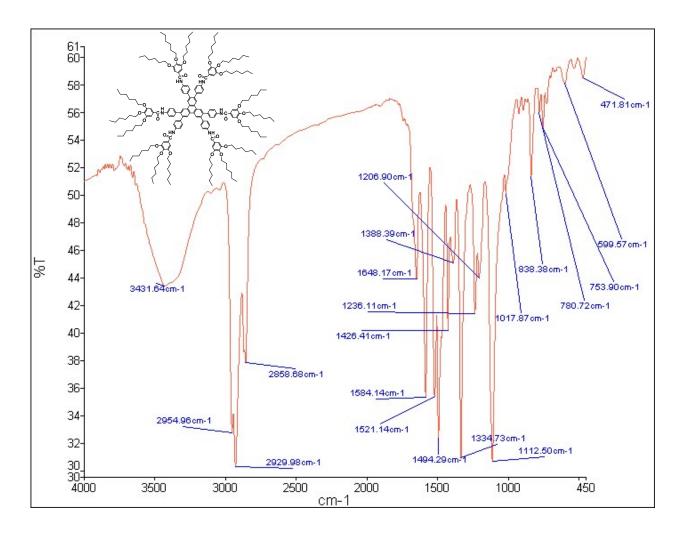


Fig. S14 FT-IR spectrum of derivative 4

S.No.	Publication	K _{SV} (M ⁻¹)	Phase	Detection limit in	Solid state Detection limit
				solution phase	
1	Present Manuscript	13.33×10 ⁵	Solution, solid and vapor	228.6 ppq	22.7 ag.cm ⁻²
2	ACS Appl. Mater. Interfaces, 2014, 6 , 20067	1.37×10 ⁵	Solution and solid	0.22 ppb	0.45 pg cm ⁻²
3	<i>Chem. Commun.</i> , 2014, 50 , 9683	8.4×10 ⁴	Solution and vapor	2-14 ppb	-
4	<i>Chem. Eur. J.</i> , 2014, 20 , 2276	2.8×10^{3} 1.55×10^{3} 1.62×10^{3}	Only solution	0.9 ppb, 3.63 ppb, 2.27 ppb	-
5	<i>Polym. Chem.</i> , 2014, 5 , 4521	1.38×10 ³	Solution and solid	10 µM	0.5 ng mm ⁻²
6	J. Mater. Chem. C, 2014, 2 , 515	7.4×10 ⁴	Solution and solid	-	22.7 ng ml ⁻¹
7	Analyst, 2014, 139, 2379	-	Solution and solid	-	5.68 ng mm ⁻²
8	<i>Sensors and Actuators</i> <i>B</i> , 2014, 199 , 148	1.04	Only solution	423 ppb	-
9	<i>Dyes and Pigments,</i> 2014, 101 , 122	2.37×10^{5}	Only solution	1.3×10 ⁻⁷ M	-
10	<i>Chem. Commun.</i> ,2013, 49 , 780	1.7 ×10 ⁴	Solution and solid	-	0.58 ng mm ⁻²

 Table S1 Comparison of present manuscript with other literature reports