A novel 8-hydroxyquinoline—pyazole based highly sensitive and selective Al(III) sensor in purely aqueous medium with intracellular application: experimental and computational studies[†]

Abu Saleh Musha Islam^a, Rahul Bhowmick^a, Hasan Mohammad^a, Atul Katarkar^b, Keya Chaudhuri^b and Mahammad Ali^{* a}

^aDepartment of Chemistry, Jadavpur University, Kolkata 700 032, India, Fax: 91-33-2414-6223, E-mail: <u>m_ali2062@yahoo.com</u> and <u>mali@chemistry.jdvu.ac.in</u>

^bMolecular & Human Genetics Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S.C. Mallick Road, Kolkata-700032, India

No.	Content.	Fig.No.
1.	¹ H-NMR spectrum of L^1 in DMSO-d ₆ .	Fig.S1
2.	¹ H-NMR spectrum of HL ² in CDCl ₃ .	Fig.S2
3.	¹ H-NMR spectrum of $H_2L^3(8Q-NH-Pyz)$ in DMSO-d ₆ .	Fig.S3
4.	¹³ C-NMR spectrum of $H_2L^3(8Q-NH-Pyz)$ in DMSO-d ₆ .	Fig.S4
5.	Mass spectrum of H_2L^3 (8Q-NH-Pyz) in MeOH.	Fig.S5
6.	IR spectrum of ligand $H_2L^3(8Q-NH-Pyz)$.	Fig.S6
7.	Plot of F.I vs [Al ³⁺].	Fig.S7
8.	LOD of Al ³⁺ .	Fig.S8
9.	Job's plot forAl ³⁺ .	Fig.S9
10.	Mass spectra of $[(8Q_NH_Pyz) - 2H + Al^{3+} + H_2O]^+$ or	Fig.S10
	$Al(L^{3})(H_{2}O)]^{+}.$	
11.	Frontier molecular orbitals involved in the UV-Vis	Fig.S11
	absorption of ligand 8Q-NH-Pyz (H_2L^3).	
12.	Frontier molecular orbitals involved in the UV-Vis	Fig.S12
	absorption of complex $[Al(L^3)(H_2O]^+$.	
13.	MTT assay of ligand 8Q-NH-Pyz.	Fig.S13

14.	List of some non-dye-based Al ³⁺ sensors.	Table S1
15.	List of some selected bond lengths of 8Q-NH-Pyz in the ground state calculated at B3LYP Levels.	Table S2
16.	Some selected geometrical parameters for [Al(L ³)(H ₂ O)] ⁺ (1) complex in the ground state calculated at B3LYP Levels.	Table S3
17.	Vertical excitation energies and oscillator strengths (f_{cal}) of some low-lying excited singlet states obtained from TDDFT// B3LYP/6-31+G calculations of 8Q-NH-Pyz.	Table S4
18.	Vertical excitation energies and oscillator strengths (f_{cal}) of some low-lying excited singlets obtained from TDDFT// B3LYP/6-31+G calculations of 8Q-NH-Pyz- Al ³⁺ complex (1).	Table S5

Fig. S1. ¹H-NMR spectrum of L¹ in DMSO-d₆.

Fig.S2. ¹H-NMR spectrum of HL² in CDCl₃.

Fig.S3. ¹H-NMR spectrum of H_2L^3 in DMSO-d₆.

Fig. S4. ¹³C-NMR spectrum of H_2L^3 in DMSO-d₆

Fig. S5. Mass spectrum of 8Q-NH-Pyz in MeOH.

Fig. S6. IR spectrum of ligand 8Q-NH-Pyz.

Fig.S7. Plot of F.I vs [Al³⁺], M.

Calculation of LOD value

To determine the detection limit, fluorescence titration of **8Q-NH-Pyz**with Al³⁺was carried out by adding aliquots of micromolar concentration of Al³⁺.

However, the detection limit (LOD) of Al³⁺have been calculated by 3σ method.

$$LOD = 3 \times S_d/S$$

where S_d is the standard deviation of the intercept of the blank (**8Q-NH-Pyz**) obtained from a plot of FI vs. [**8Q-NH-Pyz**], and S is the slope obtained from linear part of the plot of FI vs. [Al³⁺].

Fig.S8 LOD determination of Al³⁺

JOB's Plot

This method is based on the measurement f a series of solutions in which molar concentrations of two reactants varybut their sum remains constant. The fluorescence intensity of each solution was measured a suitable wavelength and plotted against the mole fraction of one reactant. Amaximum in fluorescence intensity appeared at themole ratio corresponding to the combiningratio of the reactants. The composition of the complex was determined by JOB's method and found to be (1:1) with respect to ligand for Al³⁺.

Fig.S9. JOB's plot for Al³⁺.

Fig.S10. Mass spectra of $[(8Q-NH-Pyz) - 2H + Al + H_2O]^+$.

Fig. S11. Frontier molecular orbitals involved in the UV-Vis absorption of ligand 8Q-NH-Pyz (H₂L³).

Fig. S12. Frontier molecular orbitals involved in the UV-Vis absorption of complex $[Al(L^3)(H_2O]^+$.

Calculation of Quantum Yield:

Fluorescence quantum yields (Φ) were estimated by integrating the area under the fluorescence curves using the equation,

 $\Phi_{\text{sample}} = (\text{OD}_{\text{std}} \times A_{\text{sample}})/(\text{OD}_{\text{sample}} \times A_{\text{std}}) \times \Phi_{\text{std}}$

where A_{sample} and A_{std} are the area under the fluorescence spectral curves and OD_{sample} and OD_{std} are the optical densities of the sample and standard, respectively at the excitation wavelength. Quninesulphate has been used as the standard with $\Phi_{std} = 0.54$ in water formeasuring the quantum yields of **8Q-NH-Pyz** and of **8Q-NH-Pyz-Al³⁺**systems.

Fig.S13. MTT assay of ligand 8Q-NH-Pyz.

Ligand	K _d /K _f	Solvent	LOD	Quantum Yield	Biological study	Fold	Ref
	-	DMSO/H ₂ O = 2:98	21.6 nM	-	Done	-	1
	5.96×10^{3} M ⁻¹	20 mM HEPES, 1% EtOH	29.4 nM	0.59	Done	337	2
	$0.4 imes 10^{6} \ M^{-1}$	1 : 1 (v/v) CH ₃ CN– H ₂ O	50 μM	-	Done	42	3
	3.61 ×10 ⁹ M ⁻¹	MeOH : H ₂ O (99 : 1, v/v)	0.7 mM	0.106	-	153	4
	$0.35 \times 10^5 \text{M}^{-1}$	DMSO/water: 1/100	60μΜ	0.29	Done	11	5

Table S1. List of some non-dye-based Al³⁺ sensors

ОН	8.32× 10 ⁶ M ⁻¹	EtOH/H ₂ O (95 : 5, v/v)	3.28 μM	-	-	12	6
	5.23 × 10 ⁵ M ⁻¹	EtOH–H ₂ O (95 : 5 v/v)	0.89 µM	0.11	-	250	7
	5.6×10^4 M ⁻¹	Ethanol	0.72 μM	-	-	220	8
HO N= OH PNI	2.5×10^{3} M ⁻¹	50 mM Bis–Tris buffer	-	-	Done	100	9
	log β) is deduced to be 8.012	10% (v/v) methanol aqueous medium (acetate buffer, pH 4.5)	below 10 ⁻⁷ M	-	-	30	10
O OH OH S	8.84×10^{3} M ⁻¹	H ₂ O/EtOH (1:1, v/v).	0.50 μΜ	-	-	110	11
	log Ka) determine d to be 9.2	DMF	least down to 1 μM	-	-	-	12

d d d	1.6 × 10 ⁻³	6% HEPES in acetonitrile, v/v	80 μM	_	Done	-	13
	8.46 X 10 ⁵ M ⁻¹	(50% H ₂ O/THF v/v	22 nM	0.07	Done	6	14
	1.26 X 10 ³ M ⁻¹	MeCN-H ₂ O (v/v,1/1)	9.82 μM	-	-	230	15
(L_{2})	-	Methanol	1.0 μM and 0.75 μM	-	-	50	16
	-	MeOH–H ₂ O (95 : 5, v/v).	-	0.0154	-	17	17
	7.0×10^{3} M ⁻¹	CH ₃ CN–H ₂ O (50 : 50, v/v)	0.42 μM	-	Done	-	18

N N N N N	1.24 ×10 ⁷ M ⁻¹	EtOH	0.1 µM	-	-	800	19
	5.02 ×10 ⁴ M ⁻¹	MeCN–H ₂ O (9 : 1, v/v)	6.03 μM	-	-	154	20
	5.1×10 ³ M ⁻¹	DMF-H ₂ O HEPES buffer (7 : 3, v/v)	5 μΜ	-	-	10	21
	9.91 ×10 ³ M ⁻¹	THF–H ₂ O HEPES buffer (7 : 1, v/v)	3 μΜ	-	-	-	22
((E)-(3-((E)-2-hydroxybenzylideneaminx phenylimino)methyl phenol	$\begin{array}{c} 1.41 \times 10^{4} \\ \text{and} \ 1.59 \times \\ 10^{4} \\ M^{-1} \end{array}$	MeOH	47.9 nM and 82.8 nM	-	-	-	23
	5.29 × 10 ⁴ M ⁻¹	MeOH–H ₂ O (8 : 2, v/v	7.55 mM	0.011	Done	-	24

\mathbb{R}	2.55×10 ⁻ ⁴ M	MeOH–H ₂ O (9 : 1, v/v	15 nM	-	Done	7.4	25
. CHOH NH N	4.87 ×10 ⁴ M ⁻¹ .	EtOH/H ₂ O (1:9, v/v, pH 5.3)	36.6 nM.	0.45	Done	-	26
	(log K _a) 3.94	in CH₃CN	-	_	-	_	27
	log Ka 13.04	1% CH ₃ CN Water	at least down to 10 μΜ	_	-	-	28
	2.10 × 10 ² M ⁻¹	ACN:H ₂ O (1:9)	1.08 × 10 ⁻⁶ M		Done	-	29
	K _d = 1.76× 10 ⁻⁵ M	In 10mM HEPES buffer	4.29 nM	0.28	Done	157	This Work

an		evels.			
		Bo	nd Lengths (Å)		
	Al42-N37	1.994	Al42-O34	1.850	
	Al42-N16	2.050	Al42-O23	1.879	
	A142-017	2 184	A1-057w	2.030	

Bond Angles (°)

O34-Al42-

017

O17-Al42-

N16

N16-Al42-

N37 O34-Al42-

N37

87.22

78.30

98.57

98.36

159.74

171.66

103.26

75.92

84.11

O57-Al42-O23

N37-Al42-017

O57-AL42-N37

O17-Al42-O23

O57-Al42-O17

Table S2. List of some selected bond lengths of 8Q-NH-Pyz in the ground state calculated at B3LYP Levels.

Table S3.	Some selected ge	ometrical parameter	s for [Al	$(L^3)(H_2O)]^+($	1)complex in
the ground	d state calculated a	t B3LYP Levels.			

Al42-N37	1.994	Al42-O34	1.850				
Al42-N16	2.050	Al42-O23	1.879				
Al42-O17	2.184	Al-O57w	2.030				
	Bond Angles (°)						
O57-Al42-O23	159.74	O34-Al42-O17	87.22				
N37-Al42-017	171.66	O17-Al42-N16	78.30				
O57-AL42-N37	103.26	N16-Al42-N37	98.57				
O17-Al42-O23	75.92	O34-Al42-N37	98.36				
O57-Al42-O17	84.11						

Table S4. Vertical excitation energies and oscillator strengths (f_{cal}) of some lowlying excited singlet states obtained from TDDFT// B3LYP/6-31+G calculations of 8Q-NH-Pyz.

Electronic transition	Composition	Excitation energy	Oscillator strength(f_{cal})	CI	λ_{exp} (nm)
$S_0 \rightarrow S_1$	HOMO→ LUMO	3.6694 eV(338 nm)	0.1893	0.67888	336
$S_0 \rightarrow S_4$	HOMO–1→ LUMO+1	4.0773 eV (304 nm)	0.0962	0.68059	300
	HOMO–2→ LUMO			0.11597	
$S_0 \rightarrow S_8$	HOMO→ LUMO + 4	4.4392 eV(279nm)	0.4718	0.10251	288
	HOMO–3→ LUMO			0.17038	
	HOMO–4→ LUMO			0.63802	

Table S5. Vertical excitation energies and oscillator strengths (f_{cal}) of some lowlying excited singlets obtained from TDDFT// B3LYP/6-31+G calculations of 8Q-NH-Pyz-Al³⁺ complex (1).

Electronic	Composition	Excitation	Oscillator	CI	λ_{exp}
transition		energy	strength		(nm)
			(<i>f</i>)		
$S_0 \to S_2$	$\begin{array}{c} \text{HOMO} - 1 \rightarrow \\ \text{LUMO} \end{array}$	3.24 eV (382.26 nm)	0.0101	0.70274	380
$S_0 \to S_3$	$\begin{array}{c} \text{HOMO} - 2 \rightarrow \\ \text{LUMO} \end{array}$	3 .6992 eV(335.16 nm)	0.0289	0.68281	337

References

- S. Gui, Y. Huang, F. Hu, Y. Jin, G. Zhang, L. Yan, D. Zhang and R. Zhao, *Anal. Chem.* 2015, 87, 1470.
- C. Liang, W. Bu, C. Li, G. Men, M. Deng, Y. Jiangyao, H. Sunb, and S. Jiang, *Dalton Trans.*, 2015, 44, 11352.
- 3. J. Kumar, M. J.Sarma, P. Phukan and D. K. Das, *Dalton Trans.*, 2015, 44, 4576.
- S. M. Hossain, A. Lakma, R. N. Pradhan, A. Chakraborty, A. Biswas, A. K. Singh, RSC Adv., 2015, 5, 63338.
- 5. S. Sen, T. Mukherjee, B. Chattopadhyay, A. Moirangthem, A. Basu, J. Marekd and P. Chattopadhyay, *Analyst*, 2012, **137**, 3975.
- 6. Y. W. Liu, C. H. Chen and A. T Wu, *Analyst*, 2012, **137**, 5201.
- 7. C. H. Chen, D. J. Liao, C. F. Wan and A. T. Wu, *Analyst*, 2013, **138**, 2527.
- J. C. Qin, Z. Y. Yang, L. Fan, X. Y.Cheng, T. R. Li and B. D. Wang, *Anal. Methods.*, 2014, 6, 7343.
- S. Kim, J. Y. Noh, S. J. Park, Y. J. Na, I. H. Hwang, J. Min, C. Kim and J. Kim, *RSC Adv.*, 2014, 4, 18094.
- 10. X. H. Jiang , B. D.Wang, Z. Y. Yang, Y. C. Liu, T. R. Li and Z. C. Liu, *Inorg. Chem. Commun.*, 2011, 14, 1224.
- 11. Y. Lu, S. Huang, Y. Liu, S. He, L. Zhao and X. Zeng, Org. Lett., 2011, 13, 5274.
- H. M. Park, B. N.Oh, J. H. Kim, W. Qiong, I. H. Hwang , K. D. Jung, C. Kim and J. Kim, *Tet. Letters.*, 2011, **52**, 5581.
- Y. W. Wanga, M. X.Yu, Y. H. Yu, Z. P. Bai, Z. Shen, F. Y.Li and X. Z. You, *Tet. Letters.*, 2009, **50**, 6169.
- 14. R. Ali, S. S. Razi, P. Srivastava, M. Shahid and A. Misra, RSC Adv., 2015, 5, 61513.
- 15. S. Erdemir and S. Malkondu, J. Lumin., 2015, 158, 401.
- 16. V. K. Gupta, A. K. Singh and L. K. Kumawat, Sens. Actuators B., 2014, 195, 98.
- T. Li, R. Fang, B. Wang, Y. Shao, J. Liu, S. Zhang and Z. Yang, *Dalton Trans.*, 2014, 43, 2741.
- R. Patil, A. Moirangthem, R. Butcher, N. Singh, A. Basu, K. Tayade, U. Fegade, D. Hundiwale, and A. Kuwar, *Dalton Trans.*, 2014, 43, 2895.

- Z. C. Liao, Z. Y.Yang, Y. Li, B. D.Wang and Q. X. Zhou, *Dyes and Pigments.*,2013, 97, 124.
- 20. Y. J. Lee, C. Lima, H. Suha, E. J. Songb and C. Kima, Sens. Actuators B., 2014, 201, 535.
- 21. K. Kaur, V. K. Bhardwaj, N. Kaur and N. Singh, Inorg. Chem. Commun., 2012, 18, 79.
- 22. K. Kaur, V. K. Bhardwaj, N. Kaur and N. Singh, Inorg. Chem. Commun., 2012, 26, 31.
- 23. S. K. Shoora, A. K. Jaina and V. K. Gupta, Sens. Actuators B., 2015, 216, 86.
- R. Alam, T. Mistri, R. Bhowmick, A. Katarkar, K. Chaudhuri and M. Ali, *RSC Adv.*, 2015, 5, 53940.
- R. Bhowmick, M. Dolai, R. Alam, T. Mistri, A. Katarkar, K. Chaudhuri and M. Ali, *RSC Adv.*, 2014, 4, 41784.
- F.Yu, L. J. Hou, L. Y. Qin, J. B. Chao, Y.Wang and W. J.Jin, J. Photochem. Photobiol A: Chemistry ,2016, 315, 8–13.
- 27. D. Maity and T. Govindaraju, Chem. Commun., 2010, 46, 4499.
- 28. D.Maity and T.Govindaraju, Chem. Commun. 2012, 48, 1039.
- 29. T. Anand, G. Sivaraman, A. Mahesh and D. Chellappa, Anal. Chim. Acta., 2015, 853, 596.