Zn (II) and $\mathrm{Cu}($ II) formamidine complexes: Structural, kinetics and polymer tacticity studies in ring-opening polymerization of ε-caprolactone and lactides

Ekemini D. Akpan, ${ }^{\dagger}$ Stephen O. Ojwach, ${ }^{* \hbar}$ Bernard Omondi, $*^{\dagger}$ and Vincent O. Nyamori, ${ }^{\dagger}$
${ }^{\dagger}$ School of Chemistry and Physics, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
${ }^{\dagger}$ School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.

Journal in which to be published: New Journal of Chemistry.

Supplementary Information

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1}$ in CDCl_{3} at room temperature.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{1}$ in CDCl_{3} at room temperature.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of complex 2 in CDCl_{3} at room temperature.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3}$ in CDCl_{3} at room temperature.

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{3}$ in CDCl_{3} at room temperature.

Figure S6. COSY NMR spectrum of complex 1 in CDCl_{3} at room temperature.

Figure S7. Two dimensional (2D) ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ nuclear overhauser effect spectroscopy (NOESY) NMR of complex 1 in CDCl_{3} at room temperature.

Figure S8. DOSY NMR spectra of complexes (a) $\mathbf{1}$ and (b) $\mathbf{3}$

Figure S9. (a) Bulk polymerization of ε-CL to PCL with time for complexes $\mathbf{1 - 4}$ at $110{ }^{\circ} \mathrm{C}, \mathrm{M} / \mathrm{I}$ $=200,[C L]_{0}=0.01 \mathrm{~mol}$ and $[1]=0.00005 \mathrm{~mol}$ and (b) Polymerization of ${ }_{\mathrm{D}, \mathrm{L}}$-lactide and L^{-} lactide to polylactides using complexes $\mathbf{1}$ and $\mathbf{3}$ in toluene at $110^{\circ} \mathrm{C},[\mathrm{CL}]_{0} /[\mathrm{I}]=200$.

Figure S10. (a) First order kinetic plots of $\ln [C L]_{0} /[C L]_{t} v s$. time for complexes $\mathbf{1 - 4}$ in the bulk polymerization of $\varepsilon-\mathrm{CL}$ at $110^{\circ} \mathrm{C},[\mathrm{CL}]_{0} /[\mathrm{I}]=200$. (b) First order kinetic plots of $\ln [\mathrm{CL}]_{0} /[\mathrm{CL}]_{\mathrm{t}}$ $v s$. time for complexes $\mathbf{1}$ and $\mathbf{3}$ in the polymerization of ${ }_{\mathrm{D}, \mathrm{L}}$-lactide and L_{L}-lactide to polylactides in toluene at $110^{\circ} \mathrm{C},[\mathrm{CL}]_{o} /[\mathrm{I}]=200$.

Figure S11. Semi-logarithmic kinetic plots for ε-CL polymerization catalyzed by complex $\mathbf{3}$ at various temperatures

Stellenbosch University
Project Name: GPC2006
Reported by User: System

SAMPLE INFORMATION			
Sample Name:	ED003	Acquired By:	System
Sample Type:	Broad Unknown	Date Acquired:	2014/12/03 07:25:32 PM
Vial:	3	Acq. Method:	GPC_im_UV254_320
Injection \#:	1	Date Processed:	2014/12/04 08:23:02 AM
Injection Volume:	100.00 ul	Channel Name:	410
Run Time:	30.00 Minutes	Channel Desc.:	RI Detector
Column Type:		Sample Set Name	20141203pm

Broad Unknown Relative Chromatogram

Broad Unknown Relative Peak Table

	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	Mz+1/Mw
1		8631	18468	19883	28657	38314	2.139812	1.551756	2.074657

Figure S12. GPC traces of PCL obtained from catalyst 3, M/I = 200, time $53 \mathrm{~h}, 110^{\circ} \mathrm{C}$.

Stellenbosch University
Project Name: GPC2006
Reported by User: System

SAMPLE			
Sample Name:	ED013	Acquired By:	System
Sample Type:	Broad Unknown	Date Acquired:	2014/12/04 12:45:57 AM
Vial:	13	Acq. Method:	GPC_im_UV254_320
Injection \#:	1	Date Processed:	2014/12/04 08:23:02 AM
Injection Volume:	100.00 ul	Channel Name:	410
Run Time:	30.00 Minutes	Channel Desc.:	RI Detector
Column Type:		Sample Set Name	20141203pm

Broad Unknown Relative Chromatogram

Broad Unknown Relative Peak Table

	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	$M z+1$ (Daltons)	Polydispersity	$\mathrm{Mz} / \mathrm{Mw}$	$\mathrm{Mz}+1 / \mathrm{Mw}$
1		898	1006	646	1164	1381	1.120301	1.157019	1.372802

Figure S13. GPC traces of PCL obtained from catalyst 3, M/I =200, in methanol, time 180 mins, $110^{\circ} \mathrm{C}$.

Stellenbosch University
Project Name: GPC2006
Reported by User: System

	S A M PLE		I N F OR M A T I O N
Sample Name:	ED016	Acquired By:	System
Sample Type:	Broad Unknown	Date Acquired:	2014/12/04 02:22:02 AM
Vial:	16	Acq. Method:	GPC_im_UV254_320
Injection \#:	1	Date Processed:	2014/12/04 08:23:02 AM
Injection Volume:	100.00 ul	Channel Name:	410
Run Time:	30.00 Minutes	Channel Desc.:	RI Detector
Column Type:		Sample Set Name	20141203pm

Broad Unknown Relative Peak Table

	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	$\mathrm{Mz}+1$ (Daltons)	Polydispersity	$\mathrm{Mz} / \mathrm{Mw}$	$\mathrm{Mz+1/Mw}$
1		16866	31127	31401	45986	61134	1.845614	1.477348	1.963994

Figure S14. GPC traces of PLA obtained from catalyst 3, M/I = 200, in toluene, time $9 \mathrm{~h}, 110$ ${ }^{\circ} \mathrm{C}$.

Figure S15. ES-MS of the crude PLA (from ${ }_{\mathrm{D}, \mathrm{L}}$-lactide) from catalyst 3, [CL] $/[3]=200,9 \mathrm{~h}$, showing distribution of two structural components.

Figure S16. ${ }^{1} \mathrm{H}$ homonuclear decoupled NMR of the methine region of poly $(\mathrm{L}-\mathrm{LA})$ formed with (a) complex 1 and (b) complex $\mathbf{3}$, respectively.

Figure S17. (a) ${ }^{13} \mathrm{C}$ NMR spectra carbonyl region and (b) ${ }^{13} \mathrm{C}$ NMR methine region of poly $\left(\mathrm{L}^{-}\right.$ LA).

Figure S18. ${ }^{1} \mathrm{H}$ homonuclear decoupled NMR of the methine region of poly(d,L-LA).

Figure S19. (a) ${ }^{13} \mathrm{C}$ NMR spectra carbonyl region and (b) ${ }^{13} \mathrm{C}$ NMR methine region of poly $\left(\mathrm{D}, \mathrm{L}^{-}\right.$ LA)

Table S1. Crystal data collection and structural refinement parameters for complexes 1-4

	1	2	3	4
Empirical formula	$\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Zn}_{3}$	$\mathrm{C}_{58} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Zn}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Zn}_{2}$	$\mathrm{C}_{58} \mathrm{H}_{84} \mathrm{Cu}_{2} \mathrm{~N}_{4} \mathrm{O}_{8}$
Formula weight	1055.07	1096.03	927.72	1092.37
Temperature (K)	173(2)	173(2)	293(2)	173(2)
Wavelength (A)	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	$P 2 . /$ c	$P-1$	$P-1$	$P 2 . /$ c
a/Å	9.5958(6)	13.9570(3)	9.4219(7)	15.4331(10)
b/Å	15.6026(9)	21.3908(4)	12.1061(9)	12.4453(9)
c/Å	16.4916(10)	21.4967(5)	20.8673(18)	16.2537(11)
$\boldsymbol{\alpha}$	90°	$94.542(10)^{\circ}$	85.831(5) ${ }^{\circ}$	90°
β	103.752(2) ${ }^{\circ}$	108.766(10) ${ }^{\circ}$	$85.579(5)^{\circ}$	104.965(3) ${ }^{\circ}$
γ	90°	100.316(10) ${ }^{\circ}$	77.657(4) ${ }^{\circ}$	90°
Volume (\AA^{3})	2398.3(3)	5913.6(2)	2314.4(3)	3016.0(4)
Z	2	4	2	2
Density (calculated)	$1.461 \mathrm{Mg} / \mathrm{m}^{3}$	$1.231 \mathrm{Mg} / \mathrm{m}^{3}$	$1.331 \mathrm{Mg} / \mathrm{m}^{3}$	$1.203 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.552 \mathrm{~mm}^{-1}$	$0.864 \mathrm{~mm}^{-1}$	$1.091 \mathrm{~mm}^{-1}$	$0.757 \mathrm{~mm}^{-1}$
F(000)	1096	2336	976	1164
Crystal size	$0.41 \times 0.36 \times 0.32 \mathrm{~mm}^{3}$	$0.36 \times 0.33 \times 0.29 \mathrm{~mm}^{3}$	$0.18 \times 0.15 \times 0.12 \mathrm{~mm}^{3}$	$0.36 \times 0.34 \times 0.34 \mathrm{~mm}^{3}$
Theta range for data collection	1.82 to 28.59°	0.978 to 28.433°	0.980 to 27.917°	1.366 to 25.493°
Index ranges	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12,-20 \leq \mathrm{k} \leq 20,- \\ & 21 \leq 1 \leq 22 \end{aligned}$	$\begin{aligned} & -17 \leq \mathrm{h} \leq 18,-27 \leq \mathrm{k} \leq 28,-27 \\ & \leq 1 \leq 28 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12,-15 \leq \mathrm{k} \leq 14,- \\ & 26 \leq 1 \leq 26 \end{aligned}$	$\begin{aligned} & -18 \leq h \leq 18,-15 \leq k \leq 15,-19 \\ & \leq 1 \leq 19 \end{aligned}$
Reflections collected	53536	133169	36720	57141
Independent reflections	$6033[\mathrm{R}(\mathrm{int})=0.0176]$	28279 [R (int) $=0.0230]$	$10307[\mathrm{R}$ (int) $=0.0342]$	$5593[\mathrm{R}(\mathrm{int})=0.0338]$
Completeness to theta $=\mathbf{2 8 . 5 9}{ }^{\circ}$	100\%	100.0\%	98.10\%	100.0\%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.609 and 0.524	0.791 and 0.683	0.877 and 0.822	0.773 and 0.769
Refinement method	Full-matrix least-squares on F^{2}			
Data / restraints / parameters	6032 / 0 / 302	28279 / 2 / 1348	10307 / 5 / 567	5593 / 0 / 325
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.059	1.041	1.135	1.095
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0273, \mathrm{wR}_{2}=0.0715$	$\mathrm{R} 1=0.0338, \mathrm{wR}_{2}=0.0815$	$\mathrm{R} 1=0.0510, \mathrm{wR}_{2}=0.1165$	$\mathrm{R} 1=0.0312, \mathrm{wR}_{2}=0.0841$
R indices (all data)	$\mathrm{R} 1=0.0287, \mathrm{wR}_{2}=0.0725$	$\mathrm{R} 1=0.0475, \mathrm{wR}_{2}=0.0910$	$\mathrm{R} 1=0.0633, \mathrm{wR}_{2}=0.1237$	$\mathrm{R} 1=0.0361, \mathrm{wR}_{2}=0.0875$
Largest diff. peak and hole	0.949 and -0.742 e. \AA^{-3}	0.745 and -0.480 e. \AA^{-3}	0.740 and -0.555 e. \AA^{-3}	0.351 and -0.361 e. \AA^{-3}

