Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information, New J. Chem.

C,N-chelated organotin(IV) azides: Synthesis, structure and use within the click

chemistry

Petr Švec^a*, Karel Bartoš^b, Zdeňka Růžičková^a, Petra Cuřínová^c, Libor Dušek^d, Jan Turek^e,

Frank De Proft^e, Aleš Růžička^a

 ^aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic
 ^bHigh School of Chemistry Pardubice, Poděbradská 94, CZ-530 09, Pardubice, Czech Republic
 ^cDepartment of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, v.v.i, Rozvojová 135/1, CZ-165 02, Prague, Czech Republic
 ^dInstitute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic
 ^eEenheid Algemene Chemie (ALGC), Member of the QCMM VUB-UGent Alliance Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium *Corresponding author, e-mail: petr.svec2@upce.cz

Contents

Scheme S1 - General NMR numbering used in the full paper
Table S1 - Important NMR parameters of 1-16 S3
Fig. S1 – Supramolecular architecture of 4
Fig. S2 – Molecular structure of 8
Fig. S3 – Molecular structure of 8 (with solvating H_2O and $CHCl_3$ molecules)
Fig. S4 – Molecular structure of 14a
Fig. S5 – Dimeric presentation of the molecular structure of 14a
Experimental part - preparation and spectroscopic characterization of 1-16 S9-S18
ESI-MS measurements
Table S2 - Selected crystallographic data of 2, 4 and 6 S21
Table S3 - Selected crystallographic data of 8, 10 and 11 S22
Figure S6 - Optimized geometries of compounds 8, 10, 11 and 14
Figure S7 - Optimized geometries of compounds 15 and 16
Table S4 - Energy and free energy differences S25
Table S5 – Comparison of theoretical and experimental data for 8, 10 and 11

Scheme S1: General NMR numbering of organic substituents used in the full paper

Numbering of compounds corresponds with the numbering in the full paper.

	δ(¹¹⁹ Sn)	$\Delta\delta(^{119}Sn)$	δ(¹³ C)	$^{1}J(^{119/117}$ Sn, $^{13}C(1))$	${}^{3}J({}^{119}\text{Sn}, {}^{1}\text{H}(6))$
Compound	[ppm]	[ppm] ^a	[ppm] ^b	[Hz]	[Hz]
1	-84.2	-32.5	n/a	~ 655	64
2	-196.1	-19.0	n/a	812/775	73
3	-141.1	-23.0	n/a	728/694	~ 70
4	-194.6	-90.3	n/a	n/a	84
5	-243.5	-73.5	n/a	n/a	86
6	-312.6	-59.8	n/a	1219/1164	102
7	-87.5	-3.3	159.6	662/632	65 ^c
8	-222.0	-25.9	158.1	818/782	74
9	-88.4	-4.2	172.3	660/630	65
10	-220.0	-23.9	172.4	n/a	~ 70
11	-84.3	-0.1	163.7	660/631	65 ^c
12	-216.5	-20.4	163.6	n/a	71
13	-85.7	-1.5	161.2	661/633	65
14	-221.9	-25.8	160.4	808/773	~ 72
15	-98.2	-14.0	144.8 (br)	652/622	~ 63 ^c
16	-223.2	-27.1	144.1 (br)	770/740	74

Table S1: Important NMR parameters of 1-16 recorded in CDCl₃ (unless specified otherwise)

^awith respect to the starting *C*,*N*-chelated organotin(IV) chloride (for **1-6**) or azide (**7-16**); ^bchemical shift value of the tetrazolide or triazolide carbons; ^cmeasured in benzene-d₆

Fig. S1: Supramolecular architecture of **4** (PLUTON view). Selected interatomic distances [Å]: N7-Sn1a 3.278, N7-C10a 3.285. N7...H-C10a 122.74°.

Fig. S2: Molecular structure of **8** (ORTEP presentation, 40% probability level). Solvating CHCl₃ and water molecules as well as all hydrogen atoms are omitted for clarity. Selected interatomic distances [Å] and angles [°]; values in square brackets are given for another two independent molecules in the unit cell: Sn1-N1 2.466(5) [2.448(5), 2.468(4)], Sn1-N2 2.263(5) [2.254(5), 2.255(4)], N2-N3 1.361(6) [1.353(6), 1.365(6)], N3-N4 1.302(7) [1.304(7), 1.306(8)], N4-N5 1.358(6) [1.343(7), 1.349(8)], N2-C22 1.344(7) [1.341(7), 1.335(7)], N5-C22 1.315(8) [1.322(7), 1.325(7)], Sn1-C1 2.126(5) [2.134(5), 2.130(5)], Sn1-C1 2.126(5) [2.132(4), 2.123(5)], Sn1-C16 2.132(5) [2.121(5), 2.123(6)]; N1-Sn1-N2 169.33(13) [170.97(14), 167.68(15)], Sn1-N2-N3 116.7(3) [114.2(3), 116.2(4)], N2-N3-N4 108.5(4) [108.1(4), 107.0(5)], N3-N4-N5 109.6(4) [110.2(4), 110.9(5)], N4-N5-C22 105.8(4) [105.6(5), 105.1(5)], N2-C22-N5 110.8(4) [110.4(4), 110.7(5)], C22-N2-N3 105.4(4) [105.7(4), 106.3(4)], C1-Sn1-C10 122.89(18) [124.57(18), 112.69(19)], C1-Sn1-C16 123.09(18) [114.60(18), 127.37(18)], C10-Sn1-C16 112.57(19) [119.25(19), 118.4(2)].

Fig. S3: Detail of selected part of the molecular structure of **8** (with solvating H₂O and CHCl₃ molecules) – presentation of the H-bonding. H-bonding: *i*) N...H-O 167.39° (2.872 Å), *ii*) N...H-O 169.51° (2.914 Å).

Fig. S4: Molecular structure of the monomeric unit of 5-*N*,*N*-dimethylaminomethyl-*1H*-tetrazole (**14a**) (ORTEP presentation, 50% probability level). Selected interatomic distances [Å] and angles [°]: N1-N2 1.344(3), N2-N3 1.309(3), N3-N4 1.353(3), N4-C1 1.328(3), N4-C1 1.346(3), N5-C10 1.332(3), Sn1-C1 2.138(2), Sn1-C17 2.144(2), N1-C1 1.330(3); N1-N2-N3 108.82(17), N2-N3-N4 109.56(17), N3-N4-C1 104.72(17), N1-C1-N4 111.37(17), N2-N1-C1 105.52(16).

Selected crystallographic data of 14a:

Empirical formula: C₄H₉N₅; formula weight 127.16; crystal system: monoclinic; Space group: C2/c; a = 16.2012(4) Å; b = 6.1332(5) Å; c = 12.7070(2) Å; β = 97.423(5)°; Z = 8; V = 1252.05(11) Å³; D_c = 1.349 g.cm⁻³; crystal size: 0.23 x 0.13 x 0.06 mm; crystal shape: block; $\mu = 0.096 \text{ mm}^{-1}$; F(000) = 544; h k l range: -20,18; -7,7; -16,16; θ range: 2.536 - 27.497°; 4919 reflections measured (1416 independent, 1074 observed); 82 parameters refined; max/min τ (eÅ⁻³): 0.659 / -0.746; GOF = 1.117; R = 0.0520.

Fig. S5: Dimeric presentation of the molecular structure of **14a** (PLUTON view). Hydrogen bond N1-N5a = N5-N1a = 2.761 Å and N1-H^{...}N5a = N5-H^{...}N1a = 148.54° . Other selected interatomic distances [Å]: N1-N2 1.344(3), N2-N3 1.309(3), N3-N4 1.353(3), N1-C1 1.330(3), 1.328(3).

Experimental part – preparation and spectroscopic characterization of 1-16

Preparation of $L^{CN}(n-Bu)_2SnN_3(1)$

L^{CN}(*n*-Bu)₂SnCl (403 mg, 1.0 mmol) was dissolved in diethyl ether (10 mL) and NaN₃ (325 mg, 5.0 mmol) in distilled water (10 mL) was added. The resulting biphasic system was stirred overnight at ambient temperature. The water phase was then separated and washed with diethyl ether (2x 10 mL). The combined organic phases were dried over MgSO₄. After filtration, the clear diethyl ether solution of the title product was evaporated to dryness in vacuo giving pure **1** as yellowish oil. Isolated yield 348 mg (85%). ¹H NMR (CDCl₃, 295 K, ppm): 7.90 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 6$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 64$ Hz); 7.30 (m, 2H, H(4, 5)); 7.13 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{4}J({}^{119}Sn, {}^{1}H) = 29$ Hz); 3.56 (s, 2H, CH₂N); 2.31 (s, 6H, NMe₂); 1.67 (m, 4H, α-CH₂); 1.38-1.29 (m, 8H, β- and γ-CH₂); 0.90 (t, 6H, δ-CH₃, ${}^{3}J({}^{1}H, {}^{1}H)$ = 5 Hz). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 295 K, ppm): 142.4 (C(2), ${}^{2}J{}^{(119/117}Sn, {}^{13}C) = 37$ Hz); 139.7 $(C(1), {}^{1}J({}^{119/117}Sn, {}^{13}C) \approx 655$ Hz, tin satellites are partially overlapped by resonances of C(2) and C(6)); 137.3 (C(6), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 33 \text{ Hz})$; 129.4 (C(4)); 127.9 (C(5), ${}^{3}J({}^{119/117}Sn, {}^{13}C)$ = 59 Hz); 127.0 (C(3), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 55$ Hz); 65.2 (CH₂N); 45.4 (NMe₂); 28.2 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 31 \text{ Hz}); 26.9 (\gamma-C, {}^{3}J({}^{119/117}Sn, {}^{13}C) = 81 \text{ Hz}); 15.2 (\alpha-C, {}^{1}J({}^{119/117}Sn, {}^{119/117}Sn$ 497/475 Hz); 13.7 (δ-C). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -84.2. ¹H NMR (C₆D₆, 295 K, ppm): 8.32 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 6 \text{ Hz}, {}^{3}J({}^{119}\text{Sn}, {}^{1}H) = 65 \text{ Hz}); 7.20-7.10 (m, 2H, H(4, 1)) = 65 \text{ Hz}); 7.20-$ 5)); 6.84 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{4}J({}^{119}Sn, {}^{1}H) = 29$ Hz); 2.89 (s, 2H, CH₂N); 1.80-1.70 (m, 4H, α-CH₂); 1.57 (s, 6H, NMe₂); 1.38 (m, 4H, β-CH₂); 1.22-1.12 (m, 4H, γ-CH₂); $0.92 (t, 6H, \delta-CH_3, {}^{3}J({}^{1}H, {}^{1}H) = 6 Hz)$. ${}^{119}Sn\{{}^{1}H\} NMR (C_6D_6, 295 K, ppm)$: -88.8. ${}^{119}Sn\{{}^{1}H\}$ NMR (THF-d8, 295 K, ppm): -92.6. IR-ATR (cm⁻¹, selected bands only): 2055 (vs, v(N=N=N) stretching vibration). Elemental analysis (%): found C, 50.1; H, 7.6; N, 13.6. Calc. for C₁₇H₃₀N₄Sn (409.14): C, 49.91; H, 7.39; N, 13.69.

Preparation of $L^{CN}Ph_2SnN_3(2)$

 $L^{CN}Ph_2SnCl$ (443 mg, 1.0 mmol) was dissolved in dichloromethane (15 mL) and NaN₃ (325 mg, 5.0 mmol) in distilled water (10 mL) was added. The resulting biphasic system was stirred overnight at ambient temperature. The water phase was then separated and washed with dichloromethane (2x 10 mL). The combined organic phases were dried over MgSO₄. After filtration, the clear dichloromethane solution of the title product was evaporated to dryness *in vacuo* giving pure **2** as a crystalline solid. Isolated yield 270 mg (60%). Single crystals of **2** were obtained from its CHCl₃ solution by the slow evaporation of the solvent in

the air. M.p. 188-189°C. ¹H NMR (CDCl₃, 295 K, ppm): 8.17 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 73$ Hz); 7.62 (d, 4H, o-Ph, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 68$ Hz); 7.45-7.30 (m, 8H, L^{CN} and Ph moieties); 7.18 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{4}J({}^{119}Sn, {}^{1}H) = 32$ Hz); 3.51 (s, 2H, CH₂N); 1.88 (s, 6H, NMe₂). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 143.0 $(C(2), {}^{2}J({}^{119/117}Sn, {}^{13}C) = 42 \text{ Hz}); 138.0 (i-Ph, {}^{1}J({}^{119/117}Sn, {}^{13}C) = 768/727 \text{ Hz}); 137.9 (C(6),)$ ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 39$ Hz); 136.2 (C(1), ${}^{1}J({}^{119/117}Sn, {}^{13}C) = 812/775$ Hz); 135.8 (*o*-Ph, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 43 \text{ Hz}); 130.3 (C(4)); 129.8 (p-Ph)); 129.1 (m-Ph), {}^{3}J({}^{119/117}Sn, {}^{13}C) = 66$ Hz); 128.3 (C(5), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 68$ Hz); 127.5 (C(3), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 64$ Hz); 64.5 $(CH_2N, {}^2J({}^{119/117}Sn, {}^{13}C) = 31 Hz); 45.7 (NMe_2). {}^{119}Sn{}^{1}H} NMR (CDCl_3, 295 K, ppm): -$ 196.1. ¹H NMR (C₆D₆, 295 K, ppm): 8.56 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 73$ Hz); 7.56 (m, 4H, *o*-Ph, ${}^{3}J({}^{119}Sn, {}^{1}H) = 68$ Hz); 7.27 (m, 1H, H(4)); 7.19 (m, 7H, L^{CN} and Ph moieties); 6.84 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 8$ Hz, ${}^{4}J({}^{119}Sn, {}^{1}H) = 33$ Hz); 2.87 (s, 2H, CH₂N); 1.31 (s, 6H, NMe₂). ¹¹⁹Sn{¹H} NMR (C₆D₆, 295 K, ppm): -195.7. ¹¹⁹Sn{¹H} NMR (THF-d8, 295 K, ppm): -199.9. IR-ATR (cm⁻¹, selected bands only): 2050 (vs, v(N=N=N) stretching vibration). Elemental analysis (%): found C, 56.4; H, 5.1; N, 12.3. Calc. for C₂₁H₂₂N₄Sn (449.12): C, 56.16; H, 4.94; N, 12.47.

Preparation of $(L^{CN})_2(n-Bu)SnN_3(3)$

3 was prepared in the same way as **1** using (L^{CN})₂(*n*-Bu)SnCl (480 mg, 1.0 mmol) and NaN₃ (325 mg, 5.0 mmol). Yellowish oil. Isolated yield 403 mg (83%). ¹H NMR (CDCl₃, 295 K, ppm): 7.67 (br, 2H, H(6), ³J(¹¹⁹Sn, ¹H) \approx 70 Hz); 7.25 (m, 4H, H(4, 5)); 7.16 (d, 2H, H(3), ³J(¹H, ¹H) = 7 Hz); 3.57 and 3.28 (br, 2x 2H, anisochronous CH₂N moieties); 2.09 (br, 12H, NMe₂); 1.63 (br, 2H, α-CH₂); 1.55 (br, 2H, β-CH₂); 1.38 (m, 2H, γ-CH₂); 0.86 (t, 3H, δ-CH₃, ³J(¹H, ¹H) = 6 Hz). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 143.7 (br, C(2), ²J(^{119/117}Sn, ¹³C) could not be read); 140.6 (C(1), ¹J(^{119/117}Sn, ¹³C) = 728/694 Hz); 136.6 (C(6), ²J(^{119/117}Sn, ¹³C) = 39 Hz); 129.1 (C(4), ⁴J(^{119/117}Sn, ¹³C) = 65 Hz); 65.7 (CH₂N, ⁿJ(^{119/117}Sn, ¹³C) = 25 Hz); 45.5 (NMe₂); 2.8.2 (β-C, ²J(^{119/117}Sn, ¹³C) = 30 Hz); 26.8 (γ-C, ³J(^{119/117}Sn, ¹³C) = 97 Hz); 16.7 (br, α-C, ¹J(^{119/117}Sn, ¹³C) could not be read); 13.6 (δ-C). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): - 141.1. IR-ATR (cm⁻¹, selected bands only): 2056 (vs, v(N=N=N) stretching vibration). Elemental analysis (%): found C, 54.5; H, 6.9; N, 14.3. Calc. for C₂₂H₃₃N₅Sn (486.23): C, 54.35; H, 6.84; N, 14.40.

Preparation of $L^{CN}(n-Bu)Sn(N_3)_2(4)$

4 was prepared in the same way as 2 using $L^{CN}(n-Bu)SnCl_2$ (381 mg, 1.0 mmol) and NaN₃ (650 mg, 10.0 mmol). Yellowish oil which slowly solidifies on standing. Isolated yield 295 mg (75%). Single crystals of 4 were obtained from its CHCl₃ solution by the slow evaporation ¹H NMR (CDCl₃, 295 K, ppm): 7.87 (d, 1H, H(6), of the solvent in the air. M.p. 74-76°C. ${}^{3}J({}^{1}H, {}^{1}H) = 7 \text{ Hz}, {}^{3}J({}^{119}\text{Sn}, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 1H, H(3), }{}^{3}J({}^{1}H, {}^{1}H) = 84 \text{ Hz}); 7.42-7.35 \text{ (m, 2H, H(4, 5))}; 7.20 \text{ (d, 2H, H(3, 5))}; 7.20$ ¹H) = 7 Hz, ${}^{4}J({}^{119}Sn, {}^{1}H) = 38$ Hz); 3.66 (s, 2H, CH₂N); 2.39 (s, 6H, NMe₂); 1.83 (m, 2H, α -CH₂); 1.70 (m, 2H, β -CH₂); 1.44 (m, 2H, γ -CH₂); 0.95 (t, 6H, δ -CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz). $^{13}C{^{1}H}$ NMR (CDCl₃, 295 K, ppm): 141.5 (C(2), $^{2}J(^{119/117}Sn, ^{13}C) = 47$ Hz); 136.6 (C(6), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 56 \text{ Hz}); 131.0 (C(4)); 128.6 (C(5), {}^{3}J({}^{119/117}Sn, {}^{13}C) = 82 \text{ Hz}); 127.6 (C(3), {}^{2}J({}^{119/117}Sn, {}^{119/117}Sn, {}^{119/$ ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 71 \text{ Hz}); 63.5 (CH_2N); 45.0 (NMe_2); 27.3 (\beta-C, {}^{2}J({}^{119/117}Sn, {}^{13}C) = 42 \text{ Hz});$ 26.5 (γ -C, ${}^{3}J({}^{119/117}$ Sn, 13 C) = 100 Hz); 20.6 (α -C, ${}^{1}J({}^{119/117}$ Sn, 13 C) = 682/651 Hz); 13.7 (δ -C); C(1) resonance was not observed. ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -194.6. IR-ATR (cm⁻¹, selected bands only): 2066 (vs, v(N=N=N) stretching vibration). Elemental analysis (%): found C, 39.8; H, 5.5; N, 24.7. Calc. for C₁₃H₂₁N₇Sn (394.05): C, 39.62; H, 5.37; N, 24.88.

Preparation of $L^{CN}PhSn(N_3)_2(5)$

5 was prepared in the same way as **2** using $L^{CN}PhSnCl_2$ (401 mg, 1.0 mmol) and NaN₃ (650 mg, 10.0 mmol). Yellowish oil. Isolated yield 253 mg (61%). ¹H NMR (CDCl₃, 295 K, ppm): 8.03 (br d, 1H, H(6), ³J(¹H, ¹H) = 7 Hz, ³J(¹¹⁹Sn, ¹H) \approx 86 Hz); 7.61 (br, 2H, *o*-Ph); 7.55-7.40 (m, 5H, L^{CN} and Ph moieties); 7.25 (d, 1H, H(3), ³J(¹H, ¹H) = 7 Hz); 3.67 (s, 2H, CH₂N); 2.23 (s, 6H, NMe₂). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 141.6 (C(2), ²J(^{119/117}Sn, ¹³C) = 58 Hz); 137.2 (C(6), ²J(^{119/117}Sn, ¹³C) = 56 Hz); 136.6 (br, *i*-Ph); 134.8 (*o*-Ph, ²J(^{119/117}Sn, ¹³C) = 55 Hz); 130.8 (br, C(4)); 129.5 (br, *p*-Ph); 129.1 (br, *m*-Ph); 128.8 (br, C(5)); 127.9 (C(3), ³J(^{119/117}Sn, ¹³C) = 41 Hz); 63.2 (CH₂N, ²J(^{119/117}Sn, ¹³C) = 45 Hz); 45.3 (NMe₂); C(1) resonance was not observed. ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -243.5. IR-ATR (cm⁻¹, selected bands only): 2055 (vs, v(N=N=N) stretching vibration). Elemental analysis (%): found C, 43.6; H, 4.2; N, 23.5. Calc. for C₁₅H₁₇N₇Sn (414.04): C, 43.51 H, 4.14; N, 23.68.

Preparation of $(L^{CN})_2 Sn(N_3)_2(\boldsymbol{6})$

6 was prepared in the same way as **2** using $(L^{CN})_2 \text{SnBr}_2$ (274 mg, 0.5 mmol) and NaN₃ (650 mg, 10.0 mmol). Yellowish oil that very slowly crystallizes on standing. Isolated yield 120 mg (51%). Single crystals of **6** were obtained from its CHCl₃ solution by the slow evaporation of the solvent in the air. M.p. 169-171°C. ¹H NMR (CDCl₃, 295 K, ppm): 7.97 (m, 2H, H(6),

 ${}^{3}J({}^{119}\text{Sn}, {}^{1}\text{H}) = 102 \text{ Hz}); 7.45-7.40 \text{ (m, 4H, H(4, 5))}; 7.21 \text{ (m, 2H, H(3), }{}^{4}J({}^{119}\text{Sn}, {}^{1}\text{H}) = 48 \text{ Hz}); 3.77 \text{ and 3.49 (AX spin system, 2x 2H, CH₂N, <math>\Delta\delta = 142 \text{ Hz}, {}^{2}J({}^{1}\text{H}, {}^{1}\text{H}) = 14 \text{ Hz}); 2.40 \text{ and 2.01 (br, 2x 6H, anisochronous NMe₂ groups). }{}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (CDCl}_{3}, 295 \text{ K, ppm}): 141.1 (C(2), {}^{2}J({}^{119/117}\text{Sn}, {}^{13}\text{C}) = 61 \text{ Hz}); 136.7 (C(1), {}^{1}J({}^{119/117}\text{Sn}, {}^{13}\text{C}) = 1219/1164 \text{ Hz}); 136.0 (C(6), {}^{2}J({}^{119/117}\text{Sn}, {}^{13}\text{C}) = 50 \text{ Hz}); 130.7 (C(4), {}^{4}J({}^{119/117}\text{Sn}, {}^{13}\text{C}) = 18 \text{ Hz}); 128.5 (C(5), {}^{3}J({}^{119/117}\text{Sn}, {}^{13}\text{C}) = 98 \text{ Hz}); 128.2 (C(3), {}^{3}J({}^{119/117}\text{Sn}, {}^{13}\text{C}) = 94 \text{ Hz}); 64.1 (CH₂N, {}^{n}J({}^{119/117}\text{Sn}, {}^{13}\text{C}) = 43 \text{ Hz}); 46.6 \text{ and 46.4 (br, anisochronous NMe₂ groups). } {}^{119}\text{Sn}\{{}^{1}\text{H}\} \text{ NMR (CDCl}_{3}, 295 \text{ K, ppm}): -312.6. \text{ IR-ATR (cm}^{-1}, \text{ selected bands only}): 2055 (vs, v(N=N=N) \text{ stretching vibration}). Elemental analysis (%): found C, 46.1; H, 5.3; N, 23.6. Calc. for C₁₈H₂₄N₈Sn (471.13): C, 45.89; H, 5.13; N, 23.78.$

Preparation of C,N-chelated di-n-butyltin(IV) 5-methyltetrazol-1-ide (7)

1 (205 mg, 0.50 mmol) was dissolved in toluene (10 mL) and MeCN (10 mL, excess) was added. The solution was heated to reflux for 150 hours. Volatiles were then removed in vacuo giving pure oily 7 in a quantitative yield (225 mg). ¹H NMR (CDCl₃, 295 K, ppm): 7.27 (m, 1H, H(L^{CN})); 7.20 (m, 1H, H(L^{CN})); 7.15 (m, 2H, H(L^{CN})); 3.67 (s, 2H, CH₂N); 2.51 (s, 3H, CH₃); 2.42 (s, 6H, NMe₂); 1.70-1.45 (m, 8H, α - and β -CH₂); 1.34 (m, 4H, γ -CH₂); 0.83 (t, 6H, δ-CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 6$ Hz). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 295 K, ppm): 159.6 (N₄C ring); 142.4 $(C(2), {}^{2}J({}^{119/117}Sn, {}^{13}C) = 35 Hz); 138.8 (C(1), {}^{1}J({}^{119/117}Sn, {}^{13}C) = 662/632 Hz); 137.5 (C(6),$ ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 35 \text{ Hz}); 129.5 (C(4), {}^{4}J({}^{119/117}Sn, {}^{13}C) = 13 \text{ Hz}); 128.0 (C(5), {}^{3}J({}^{119/117}Sn, {}^{3}C) = 13 \text{ Hz}); 128.0 (C(5), {}^{3}C) = 13 \text{ Hz}); 128.0 (C(5), {}$ ${}^{13}C) = 62$ Hz); 127.0 (C(3), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 56$ Hz); 65.4 (CH₂N, ${}^{n}J({}^{119/117}Sn, {}^{13}C) = 26$ Hz); 45.6 (NMe₂); 28.1 (β -C, ²*J*(^{119/117}Sn, ¹³C) = 31 Hz); 26.9 (γ -C, ³*J*(^{119/117}Sn, ¹³C) = 90 Hz); 15.6 (α -C, ${}^{1}J({}^{119/117}Sn, {}^{13}C) = 501/480$ Hz); 13.5 (δ -C); 10.9 (CH₃). ${}^{119}Sn{}^{1}H{}$ NMR (CDCl₃, 295 K, ppm): -87.5. ¹H NMR (C₆D₆, 295 K, ppm): 7.81 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 65 Hz); 7.08 (m, 1H, H(4)); 6.98 (m, 1H, H(5)); 6.90 (d, 1H, H(3), {}^{3}J({}^{1}H, {}^{1}H))$ $= 8 \text{ Hz}, {}^{4}J({}^{119}\text{Sn}, {}^{1}\text{H}) = 28 \text{ Hz}); 3.11 \text{ (s, 2H, CH}_{2}\text{N}); 2.57 \text{ (s, 3H, CH}_{3}); 1.78 \text{ (s, 6H, NMe}_{2});$ 1.53-1.43 (m, 8H, α - and β -CH₂); 1.33 (m, 4H, γ -CH₂); 0.82 (t, 6H, δ -CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 6$ Hz). ¹³C{¹H} NMR (C₆D₆, 295 K, ppm): 160.8 (N₄C ring); 143.4 (C(2), ²J(^{119/117}Sn, ¹³C) = 37 Hz); 140.0 (C(1), ${}^{1}J({}^{119/117}Sn, {}^{13}C) = 666/636$ Hz); 138.8 (C(6), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 35$ Hz); 130.0 (C(4), ${}^{4}J({}^{119/117}Sn, {}^{13}C) = 13$ Hz); 128.7 (C(5)); 127.6 (C(3), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 55$ Hz); 65.5 (CH₂N, ⁿJ(^{119/117}Sn, ¹³C) = 25 Hz); 45.4 (NMe₂); 28.9 (β-C, ²J(^{119/117}Sn, ¹³C) = 31 Hz); 27.7 (γ -C, ${}^{3}J({}^{119/117}$ Sn, 13 C) = 88 Hz); 16.3 (α -C, ${}^{1}J({}^{119/117}$ Sn, 13 C) = 507/485 Hz); 14.1 (δ -C); 11.6 (CH₃). ¹¹⁹Sn{¹H} NMR (C₆D₆, 295 K, ppm): -94.1. Elemental analysis (%): found C, 51.0; H, 7.6; N, 15.3. Calc. for C₁₉H₃₃N₅Sn (450.20): C, 50.69; H, 7.39; N, 15.56.

Preparation of C,N-chelated diphenyltin(IV) 5-methyltetrazol-1-ide (8)

8 was prepared similarly as described for **7** using **2** (225 mg, 0.50 mmol) and MeCN (10 mL, excess). Overall reflux time 70 hours. White crystalline solid. Isolated yield 240 mg (98%). M.p. 69-71°C (valid for single crystals with solvating H₂O and CHCl₃ molecules). ¹H NMR (CDCl₃, 295 K, ppm): 7.85 (d, 4H, *o*-Ph, ³*J*(¹H, ¹H) = 6 Hz, ³*J*(¹¹⁹Sn, ¹H) = 68 Hz); 7.59 (d, 1H, H(1), ³*J*(¹H, ¹H) = 7 Hz, ³*J*(¹¹⁹Sn, ¹H) = 74 Hz); 7.50-7.35 (m, 8H, L^{CN} and Ph substituents); 7.28 (m, 1H, H(3)); 3.70 (s, 2H, CH₂N); 2.00 (s, 3H, CH₃); 1.96 (s, 6H, NMe₂). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 158.1 (N₄C ring); 143.0 (C(2), ²*J*(^{119/117}Sn, ¹³C) = 42 Hz); 138.2 (C(6), ²*J*(^{119/117}Sn, ¹³C) = 42 Hz); 137.9 (*i*-Ph, ¹*J*(^{119/117}Sn, ¹³C) = 785/751 Hz); 136.1 (*o*-Ph, ²*J*(^{119/117}Sn, ¹³C) = 44 Hz); 135.0 (C(1), ¹*J*(^{119/117}Sn, ¹³C) = 818/782 Hz); 130.4 (C(4), ⁴*J*(^{119/117}Sn, ¹³C) = 14 Hz); 130.0 (*p*-Ph, ⁴*J*(^{119/117}Sn, ¹³C) = 13 Hz); 129.1 (*m*-Ph, ³*J*(^{119/117}Sn, ¹³C) = 69 Hz); 128.4 (C(5), ³*J*(^{119/117}Sn, ¹³C) = 71 Hz); 127.6 (C(3), ³*J*(^{119/117}Sn, ¹³C) = 65 Hz); 64.4 (CH₂N, ⁿ*J*(^{119/117}Sn, ¹³C) = 30 Hz); 45.5 (NMe₂); 10.2 (CH₃). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -222.0. Elemental analysis (%): found C, 56.6; H, 5.4; N, 14.1. Calc. for C₂₃H₂₅N₅Sn (490.18): C, 56.36; H, 5.14; N, 14.29.

Preparation of C,N-chelated di-n-butyltin(IV) 5-tert-butyltetrazol-2-ide (9)

9 was prepared similarly as described for **7** using **1** (205 mg, 0.50 mmol) and *t*-BuCN (2 mL, excess). Overall reflux time 8 days. Yellowish oil. Isolated yield 234 mg (95%). ¹H NMR (CDCl₃, 295 K, ppm): 7.46 (d, 1H, H(6), ³*J*(¹H, ¹H) = 8 Hz, ³*J*(¹¹⁹Sn, ¹H) = 65 Hz); 7.31 (m, 1H, H(4)); 7.18 (m, 1H, H(5)); 7.13 (d, 1H, H(3), ³*J*(¹H, ¹H) = 8 Hz); 3.66 (s, 2H, CH₂N); 2.41 (s, 6H, NMe₂); 1.67-1.54 (m, 4H, α -CH₂); 1.46 (s, 9H, C(CH₃)₃); 1.36-1.29 (m, 8H, β-and γ -CH₂); 0.83 (t, 6H, δ -CH₃, ³*J*(¹H, ¹H) = 6 Hz). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 172.3 (N₄C ring); 142.4 (C(2), ²*J*(^{119/117}Sn, ¹³C) = 37 Hz); 139.3 (C(1), ¹*J*(^{119/117}Sn, ¹³C) = 660/630 Hz); 138.0 (C(6), ²*J*(^{119/117}Sn, ¹³C) = 35 Hz); 129.3 (C(4)); 127.9 (C(5), ³*J*(^{119/117}Sn, ¹³C) = 61 Hz); 126.9 (C(3), ³*J*(^{119/117}Sn, ¹³C) = 55 Hz); 65.5 (CH₂N, ⁿ*J*(^{119/117}Sn, ¹³C) = 25 Hz); 45.6 (NMe₂); 31.2 (*C*(CH₃)₃); 30.1 (C(*C*H₃)₃); 28.1 (β-C, ²*J*(^{119/117}Sn, ¹³C) = 26 Hz); 26.9 (γ-C, ³*J*(^{119/117}Sn, ¹³C) = 88 Hz); 15.7 (α -C, ¹*J*(^{119/117}Sn, ¹³C) = 500/481 Hz); 13.5 (δ -C). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -88.4. Elemental analysis (%): found C, 53.9; H, 8.2; N, 14.0. Calc. for C₂₂H₃₆N₅Sn (492.28): C, 53.68; H, 7.99; N, 14.23.

Preparation of C,N-chelated diphenyltin(IV) 5-tert-butyltetrazol-2-ide (10)

10 was prepared similarly as described for **7** using **2** (225 mg, 0.50 mmol) and *t*-BuCN (2 mL, excess). Overall reflux time 14 days. Isolated yield 240 mg (96%). Single crystals of **10** were

obtained from its CDCl₃ solution by the slow evaporation of the solvent from the NMR tube. M.p. 158-159°C. ¹H NMR (CDCl₃, 295 K, ppm): 7.84 (d, 4H, *o*-Ph, ³*J*(¹H, ¹H) = 7 Hz, ³*J*(¹¹⁹Sn, ¹H) = 71 Hz); 7.78 (d, 1H, H(6), ³*J*(¹H, ¹H) = 7 Hz, ³*J*(¹¹⁹Sn, ¹H) \approx 70 Hz); 7.48-7.38 (m, 8H, L^{CN} and Ph substituents); 7.34 (m, 1H, H(5)); 7.21 (d, 1H, H(3), ³*J*(¹H, ¹H) = 7 Hz); 3.64 (s, 2H, CH₂N); 1.98 (s, 6H, NMe₂); 1.36 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 172.4 (N₄C ring); 143.1 (C(2), ²*J*(^{119/117}Sn, ¹³C) = 41 Hz); 138.9 (C(6), ²*J*(^{119/117}Sn, ¹³C) = 788/754 Hz); 136.6 (*o*-Ph, ²*J*(^{119/117}Sn, ¹³C) = 44 Hz); 136.2 (C(1), due to the low intensity of the resonance the tin satellites were not observed); 130.4 (C(4), ⁴*J*(^{119/117}Sn, ¹³C) = 14 Hz); 129.8 (*p*-Ph, ⁴*J*(^{119/117}Sn, ¹³C) = 13 Hz); 128.9 (*m*-Ph, ³*J*(^{119/117}Sn, ¹³C) = 69 Hz); 128.5 (C(5), ³*J*(^{119/117}Sn, ¹³C) = 71 Hz); 127.5 (C(3), ³*J*(^{119/117}Sn, ¹³C) = 65 Hz); 64.9 (CH₂N, ⁿ*J*(^{119/117}Sn, ¹³C) = 31 Hz); 45.9 (NMe₂); 31.3 (*C*(CH₃)₃); 30.1 (C(CH₃)₃). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -220.0. Elemental analysis (%): found C, 59.0; H, 6.0; N, 13.0. Calc. for C₂₆H₃₁N₅Sn (532.26): C, 58.67; H, 5.87; N, 13.16.

Preparation of C,N-chelated di-n-butyltin(IV) 5-phenyltetrazol-2-ide (11)

11 can be prepared by two methods using 1 and PhCN: i) 1 (205 mg, 0.50 mmol) is mixed with PhCN (1 mL, excess) in toluene (5 mL) and the reaction mixture is then heated to reflux for ten days. Afterwards, excess of PhCN is distilled off in vacuo (ca. 150°C, 100-200 Pa) giving pure 11 as a yellowish oil in a quantitative yield (256 mg); *ii*) 1 (102 mg, 0.25 mmol) is mixed with PhCN (26 μ L, 0.25 mmol) in C₆D₆ (0.6 mL) and the mixture is sealed in the NMR tube under vacuum. The NMR tube is then heated to 100°C for two weeks which results in the quantitative conversion of reagents to pure 11. The sample may be remeasured in CDCl₃. Single crystals of **11** were obtained by the slow evaporation of its dichloromethane solution in the air. M.p. 116-118°C. ¹H NMR (CDCl₃, 295 K, ppm): 8.23 (d, 2H, *o*-Ph, ³J(¹H, 1 H) = 8 Hz); 7.47-7.40 (m, 3H, H(6) and *m*-Ph); 7.34 (m, 1H, H(4)); 7.24 (m, 1H, H(5)); 7.13 (t, 1H, p-Ph, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz); 7.10 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz); 3.63 (s, 2H, CH₂N); 2.38 (s, 6H, NMe₂); 1.72-1.62 (m, 4H, α -CH₂); 1.57 (m, 4H, β -CH₂); 1.34 (m, 4H, γ -CH₂); 0.83 (t, 6H, δ -CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 295 K, ppm): 163.7 (N₄C ring); 142.4 (C(2), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 37$ Hz); 139.1 (C(1), ${}^{1}J({}^{119/117}Sn, {}^{13}C) = 660/631$ Hz); 138.0 (C(6), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 36$ Hz); 130.1 (*i*-Ph); 129.5 (C(4)); 128.8 (*p*-Ph); 128.6 (*o*-Ph); 128.2 (C(5), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 60$ Hz); 127.0 (C(3), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 54$ Hz); 126.9 (*m*-Ph); 65.6 (CH₂N, ${}^{n}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 28.3 (β -C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 29$ Hz); 45.7 (NMe₂); 45.7 (NMe₂ 31 Hz); 27.1 (γ -C, ${}^{3}J({}^{119/117}$ Sn, 13 C) = 90 Hz); 15.9 (α -C, ${}^{1}J({}^{119/117}$ Sn, 13 C) = 501/478 Hz); 13.6

(δ-C). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -84.3. ¹H NMR (C₆D₆, 295 K, ppm): 8.62 (d, 2H, *o*-Ph, ${}^{3}J({}^{1}H, {}^{1}H) = 8$ Hz); 7.82 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 65$ Hz); 7.32 (m, 2H, *m*-Ph); 7.32 (m, 2H, *m*-Ph); 7.19 (m, 1H, H(4)); 7.12 (m, 1H, H(5)); 7.01 (t, 1H, *p*-Ph, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz); 6.91 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 8$ Hz, ${}^{4}J({}^{119}Sn, {}^{1}H) = 28$ Hz); 3.12 (s, 2H, CH₂N); 1.82 (s and m, 8H, NMe₂ and α-CH₂); 1.70-1.50 (m, 6H, α- and β-CH₂); 1.38 (m, 4H, γ-CH₂); 0.89 (t, 6H, δ-CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz). ¹¹⁹Sn{¹H} NMR (C₆D₆, 295 K, ppm): - 88.1. Elemental analysis (%): found C, 56.5; H, 7.1; N, 13.5. Calc. for C₂₄H₃₅N₅Sn (512.27): C, 56.27; H, 6.89; N, 13.67.

Preparation of C,N-chelated diphenyltin(IV) 5-phenyltetrazol-2-ide (12)

12 can be prepared similarly as described for 11 using 2 [i) 225 mg, 0.50 mmol; ii) 60 mg, 0.13 mmol] and PhCN [i) 1 mL, excess; ii) 14 µL, 0.13 mmol]. i) overall reflux time ten days or *ii*) two weeks at 100°C. Quantitative yield of a white solid 12 is achieved upon evaporation of all volatiles *in vacuo*. M.p. 53-55°C. ¹H NMR (CDCl₃, 295 K, ppm): 8.07 (d, 2H, o-Ph of the tetrazolide ring, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz); 7.83 (d, 5H, H(6) and o-Ph, ${}^{3}J({}^{1}H, {}^{1}H) = 8$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 71$ Hz, signals are completely overlapped by coincidence); 7.35-7.25 (m, 4H, L^{CN} and Ph substituents); 7.18 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz); 3.61 (s, 2H, CH₂N); 1.94 (s, 6H, NMe₂). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 163.6 (N₄C ring); 143.0 (C(2), ²J(^{119/117}Sn, ${}^{13}C) = 41$ Hz); 138.8 (C(6), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 41$ Hz); 138.1 (*i*-Ph, ${}^{1}J({}^{119/117}Sn, {}^{13}C) =$ 787/753 Hz); 136.5 (*o*-Ph, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 43$ Hz); 135.8 (C(1), due to the low intensity of the resonance the tin satellites were not observed); 130.5 (C(4), ${}^{4}J({}^{119/117}Sn, {}^{13}C) = 14$ Hz); 130.0 (*p*-Ph, ${}^{4}J({}^{119/117}Sn, {}^{13}C) = 14$ Hz); 129.9 (*i*-Ph of the tetrazolide ring); 129.1 (*m*-Ph, ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 69$ Hz); 128.8 (*p*-Ph of the tetrazolide ring); 128.7 (C(5)); 128.5 (*o*-Ph of the tetrazolide ring); 127.6 (C(3), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 64$ Hz); 127.0 (*m*-Ph of the tetrazolide ring); 64.8 (CH₂N, ${}^{n}J({}^{119/117}Sn, {}^{13}C) = 32$ Hz); 45.9 (NMe₂). ${}^{119}Sn\{{}^{1}H\}$ NMR (CDCl₃, 295 K, ppm): -216.5. ¹H NMR (C₆D₆, 295 K, ppm): 8.48 (d, 2H, *o*-Ph of the tetrazolide ring, ³J(¹H, ¹H) = 7 Hz); 8.22 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 74$ Hz); 7.72 (m, 4H, o-Ph, ${}^{3}J({}^{119}\text{Sn}, {}^{1}\text{H}) \approx 70 \text{ Hz}$); 7.15-6.99 (m, 11H, L^{CN} and Ph substituents); 6.82 (d, 1H, H(3), ${}^{3}J({}^{1}\text{H},$ 1 H) = 7 Hz); 2.95 (s, 2H, CH₂N); 1.32 (s, 6H, NMe₂). 119 Sn{ 1 H} NMR (C₆D₆, 295 K, ppm): -219.1. Elemental analysis (%): found C, 61.1; H, 5.0; N, 12.5. Calc. for C₂₈H₂₇N₅Sn (552.25): C, 60.90; H, 4.93; N, 12.68.

Preparation of C,N-chelated di-n-butyltin(IV) 5-(N,N-dimethylaminomethyl)tetrazol-1-ide (13)

The synthesis was carried out under an argon atmosphere because of the sensitivity of the product towards the moist air. 13 can be prepared similarly as described for 11 using 1 [i) 205 mg, 0.50 mmol; *ii*) 102 mg, 0.25 mmol] and Me₂NCH₂CN [*i*) 1 mL, excess; *ii*) 24 µL, 0.25 mmol]. i) overall reflux time ten days or ii) 20 days at 100°C. Quantitative yield of an oily yellowish **12** is achieved after evaporation of all volatiles *in vacuo*. ¹H NMR (CDCl₃, 295 K, ppm): 7.32 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7 \text{ Hz}, {}^{3}J({}^{119}\text{Sn}, {}^{1}H) = 65 \text{ Hz}$; 7.27 (m, 1H, H(4)); 7.19-7.10 (m, 2H, H(5) and H(3)); 3.86 (s, 2H, CH₂N of the tetrazolide ring); 3.67 (s, 2H, CH₂N of the L^{CN} ligand); 2.42 (s, 6H, NMe₂ of the tetrazolide ring); 2.30 (s, 6H, NMe₂ of the L^{CN} ligand); 1.64-1.44 (m, 8H, α - and β -CH₂); 1.33 (m, 4H, γ -CH₂); 0.82 (t, 6H, δ -CH₃, ${}^{3}J({}^{1}H, {}^{1}H)$ = 7 Hz). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 295 K, ppm): 161.2 (N₄C ring); 142.3 (C(2), ${}^{2}J{}^{(119/117}Sn, {}^{13}C)$ = 36 Hz); 139.2 (C(1), ${}^{1}J({}^{119/117}Sn, {}^{13}C) = 661/633$ Hz); 137.8 (C(6), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 36$ Hz); 129.5 (C(4), ${}^{4}J({}^{119/117}Sn, {}^{13}C) = 13$ Hz); 128.1 (C(5), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 61$ Hz); 127.0 $(C(3), {}^{3}J({}^{119/117}Sn, {}^{13}C) = 55 \text{ Hz}); 65.6 (CH_2N, {}^{n}J({}^{119/117}Sn, {}^{13}C) = 26 \text{ Hz}); 53.5 (CH_2N \text{ of the})$ tetrazolide ring); 45.7 and 45.1 (NMe₂ moieties); 28.2 (β -C, ${}^{2}J({}^{119/117}$ Sn, 13 C) = 31 Hz); 27.0 $(\gamma - C, {}^{3}J({}^{119/117}Sn, {}^{13}C) = 91 \text{ Hz}); 15.8 (\alpha - C, {}^{1}J({}^{119/117}Sn, {}^{13}C) = 500/477 \text{ Hz}); 13.6 (\delta - C).$ ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -85.7. ¹H NMR (C₆D₆, 295 K, ppm): 7.85 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 65$ Hz); 7.08 (m, 1H, H(4)); 7.00 (m, 1H, H(5)); 6.90 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz); 4.02 (s, 2H, CH₂N of the tetrazolide ring); 3.10 (s, 2H, CH₂N of the L^{CN} ligand); 2.33 (s, 6H, NMe₂ of the tetrazolide ring); 1.77 (s, 6H, NMe₂ of the L^{CN} ligand); 1.60-1.40 (m, 8H, α - and β -CH₂); 1.33 (m, 4H, γ -CH₂); 0.83 (t, 6H, δ -CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz). ${}^{119}Sn\{{}^{1}H\}$ NMR (C₆D₆, 295 K, ppm): -93.0. Elemental analysis (%): found C, 51.4; H, 7.9; N, 16.9. Calc. for C₂₁H₃₈N₆Sn (493.27): C, 51.14; H, 7.77; N, 17.04.

Preparation of C,N-chelated diphenyltin(IV) 5-(N,N-dimethylaminomethyl)tetrazol-1-ide (14) 14 was prepared under an argon atmosphere similarly as described for 11 using 2 [*i*) 225 mg, 0.50 mmol; *ii*) 67 mg, 0.15 mmol] and Me₂NCH₂CN [*i*) 1 mL, excess; *ii*) 15 µL, 0.15 mmol]. *i*) overall reflux time eight days or *ii*) 18 days at 100°C. Quantitative yield of an oily yellowish 14 is achieved after evaporation of all volatiles *in vacuo*. ¹H NMR (CDCl₃, 295 K, ppm): 7.80 (m, 5H, H(6) and *o*-Ph, ³*J*(¹¹⁹Sn, ¹H) \approx 72 Hz, signals are completely overlapped by coincidence); 7.47-7.37 (m, 7H, L^{CN} and Ph substituents); 7.34 (m, 1H, H(5)); 7.22 (d, 1H, H(3), ³*J*(¹H, ¹H) = 7 Hz); 3.63 (s, 2H, CH₂N of the L^{CN} ligand); 3.41 (s, 2H, CH₂N of the tetrazolide ring); 1.93 (br, 12H, NMe₂ fragments, signals are completely overlapped by coincidence). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 160.4 (N₄C ring); 143.2 (C(2), ² $J(^{119/117}Sn, ^{13}C) = 42$ Hz); 139.1 (C(6), ² $J(^{119/117}Sn, ^{13}C) = 41$ Hz); 138.6 (*i*-Ph, ¹ $J(^{119/117}Sn, ^{13}C) = 791/758$ Hz); 136.5 (*o*-Ph, ² $J(^{119/117}Sn, ^{13}C) = 44$ Hz); 136.1 (C(1), ¹ $J(^{119/117}Sn, ^{13}C) = 808/773$ Hz); 130.4 (C(4), ⁴ $J(^{119/117}Sn, ^{13}C) = 13$ Hz); 130.0 (*p*-Ph, ⁴ $J(^{119/117}Sn, ^{13}C) = 14$ Hz); 129.1 (*m*-Ph, ³ $J(^{119/117}Sn, ^{13}C) = 69$ Hz); 128.6 (C(5)); 127.6 (C(3), ³ $J(^{119/117}Sn, ^{13}C) = 63$ Hz); 65.0 (CH₂N of the L^{CN} ligand, ⁿ $J(^{119/117}Sn, ^{13}C) = 31$ Hz); 53.0 (CH₂N of the tetrazolide ring); 45.9 and 45.0 (NMe₂ moieties). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -221.9. ¹H NMR (C₆D₆, 295 K, ppm): 8.30 (d, 1H, H(6), ³ $J(^{1}H, ^{1}H) = 6$ Hz, ³ $J(^{119}Sn, ^{1}H) = 71$ Hz); 7.70 (m, 4H, *o*-Ph, ³ $J(^{119}Sn, ^{1}H) \approx 68$ Hz); 7.20-7.10 (m, 8H, L^{CN} and Ph substituents); 6.85 (m, 1H, H(3)); 3.60 (br, 2H, CH₂N of the tetrazolide ring); 2.97 (s, 2H, CH₂N of the L^{CN} ligand); 1.96 (br, 6H, NMe₂ of the tetrazolide ring); 1.33 (s, 6H, NMe₂ of the L^{CN} ligand). ¹¹⁹Sn{¹H} NMR (C₆D₆, 295 K, ppm): -225.3. Elemental analysis (%): found C, 56.5; H, 5.8; N, 15.6. Calc. for C₂₅H₃₀N₆Sn (533.25): C, 56.31; H, 5.67; N, 15.76.

PreparationofC,N-chelateddi-n-butyltin(IV)4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazol-1-ide (15)

1 (102 mg, 0.25 mmol), cycloctyne (31 μL, 0.25 mmol) and benzene-d₆ (0.6 mL) were sealed under vacuum in the NMR tube. The tube was heated to 100°C for two days in order to achieve a complete conversion of reagents to **15**. Quantitative yield of an oily yellowish **15** is obtained after evaporation of all volatiles *in vacuo*. The sample was remeasured in CDCl₃ in the air. ¹H NMR (CDCl₃, 295 K, ppm): 7.21 (m, 2H, H(6) and H(4)); 7.11 (m, 1H, H(5)); 7.06 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz); 3.56 (s, 2H, CH₂N); 2.87 (t, 4H, H₂CC=CCH₂ fragment of the C₈ ring); 2.32 (s, 6H, NMe₂); 1.72 (br, 4H, CH₂ fragments of the C₈ ring); 1.65-1.45 (m, 12H, α- and β-CH₂ and CH₂ fragments of the C₈ ring); 1.32 (m, 4H, γ-CH₂); 0.83 (t, 6H, δ-CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 295 K, ppm): 144.8 (N₃C₂ ring); 142.9 (C(2), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 37$ Hz); 140.6 (C(1), ${}^{1}J({}^{119/117}Sn, {}^{13}C) = 652/622$ Hz); 138.0 (C(6), ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 33$ Hz); 129.0 (C(4), ${}^{4}J({}^{119/117}Sn, {}^{13}C) = 13$ Hz); 127.8 (C(5), ${}^{3}J({}^{119/117}Sn, {}^{13}C) = 54$ Hz); 45.7 (NMe₂); 29.4 (CH₂ of the C₈ ring); 28.3 (β-C, ${}^{2}J({}^{119/117}Sn, {}^{13}C) = 28$ Hz); 25.9 (CH₂ of the C₈ ring); 24.1 (CH₂ of the C₈ ring); 15.4 (α-C, ${}^{1}J({}^{119/117}Sn, {}^{13}C) = 503/481$ Hz); 13.7 (δ-C). ${}^{119}Sn{}^{1}H{}$ NMR (CDCl₃, 295 K, ppm): -98.2.

¹H NMR (C₆D₆, 295 K, ppm): 8.05 (d, 1H, H(6), ³J(¹H, ¹H) = 7 Hz, ³J(¹¹⁹Sn, ¹H) \approx 63 Hz); 7.12 (m, 2H, H(5) and H(4)); 6.88 (d, 1H, H(3), ³J(¹H, ¹H) = 7 Hz); 3.10 (t, 4H, H₂CC=CCH₂ fragment of the C₈ ring); 3.04 (s, 2H, CH₂N); 1.91 (m, 2H, α-CH₂); 1.78 (br, 6H, α-CH₂ and CH₂ fragments of the C₈ ring); 1.70 (s, 6H, NMe₂); 1.65-1.55 (m, 4H, β-CH₂); 1.51 (br, 4H, CH₂ fragments of the C₈ ring); 1.51 (br, 4H, CH₂ fragments of the C₈ ring); 1.43 (m, 4H, γ-CH₂); 0.92 (t, 6H, δ-CH₃, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz). 119 Sn{ ${}^{1}H$ } NMR (C₆D₆, 295 K, ppm): -101.9. Elemental analysis (%): found C, 58.2; H, 8.30; N, 10.7. Calc. for C₂₅H₄₂N₄Sn (517.33): C, 58.04; H, 8.18; N, 10.83.

Preparation of C,N-chelated diphenyltin(IV) 4,5,6,7,8,9-*hexahydrocycloocta[d]*[1,2,3]*triazol-1-ide* (**16**)

2 (112 mg, 0.25 mmol), cycloctyne (31 µL, 0.25 mmol) and benzene-d6 (1.0 mL) were sealed under vacuum in the NMR tube. The tube was heated to 100°C for two days in order to achieve a complete conversion of reagents to **16**. Quantitative yield of an oily yellowish **16** is obtained after evaporation of all volatiles *in vacuo*. The sample was remeasured in CDCl₃ in the air. ¹H NMR (CDCl₃, 295 K, ppm): 7.83 (d, 4H, *o*-Ph, ³*J*(¹H, ¹H) = 7 Hz, ³*J*(¹¹⁹Sn, ¹H) = 69 Hz); 7.50 (d, 1H, H(6), ³*J*(¹H, ¹H) = 7 Hz, ³*J*(¹¹⁹Sn, ¹H) = 74 Hz); 7.48-7.30 (m, 7H, L^{CN} and Ph moieties); 7.26 (m, 1H, H(4)); 7.15 (d, 1H, H(3), ³*J*(¹H, ¹H) = 8 Hz); 3.57 (s, 2H, CH₂N); 2.65 (br, 4H, H₂CC=CCH₂ fragment of the C₈ ring); 1.80 (s, 6H, NMe₂); 1.51 (br, 4H, CH₂ fragments of the C₈ ring); 1.31 (br, 4H, CH₂ fragments of the C₈ ring). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 144.1 (br, N₃C₂ ring); 143.5 (C(2), ²*J*(^{119/117}Sn, ¹³C) = 43 Hz); 139.1 (C(1), ¹*J*(^{119/117}Sn, ¹³C) = 770/740 Hz); 138.8 (C(6), ²*J*(^{119/117}Sn, ¹³C) = 39 Hz); 136.6 (*o*-Ph, ²*J*(^{119/117}Sn, ¹³C) = 43 Hz); 128.0 (n C(4), ⁴*J*(^{119/117}Sn, ¹³C) = 13 Hz); 129.5 (*p*-Ph), ⁴*J*(^{119/117}Sn, ¹³C) = 14 Hz); 128.8 (*m*-Ph), ³*J*(^{119/117}Sn, ¹³C) = 67 Hz); 128.3 (C(5), ³*J*(^{119/117}Sn, ¹³C) = 32

Hz); 45.6 (NMe₂); 29.0 (CH₂ of the C₈ ring); 25.7 (CH₂ of the C₈ ring); 23.8 (CH₂ of the C₈ ring). 119 Sn{¹H} NMR (CDCl₃, 295 K, ppm): -223.2.

¹H NMR (C₆D₆, 295 K, ppm): 8.36 (d, 1H, H(6), ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 72$ Hz); 7.86 (d, 4H, *o*-Ph, ${}^{3}J({}^{1}H, {}^{1}H) = 7$ Hz, ${}^{3}J({}^{119}Sn, {}^{1}H) = 67$ Hz); 7.23 (m, 1H, H(4)); 7.19-7.10 (m, 7H, L^{CN} and Ph moieties); 6.86 (d, 1H, H(3), ${}^{3}J({}^{1}H, {}^{1}H) = 8$ Hz, ${}^{4}J({}^{119}Sn, {}^{1}H) = 29$ Hz); 2.98 (s, 2H, CH₂N); 2.98 (t, 4H, H₂CC=CCH₂ fragment of the C₈ ring); 1.58 (br, 4H, CH₂ fragments of the C₈ ring); 1.35 (s, 6H, NMe₂); 1.31 (br, 4H, CH₂ fragments of the C₈ ring). ¹¹⁹Sn{ ${}^{1}H$ } NMR (C₆D₆, 295 K, ppm): -225.2. Elemental analysis (%): found C, 62.7; H, 6.2; N, 10.0 Calc. for C₂₉H₃₄N₄Sn (557.31): C, 62.50; H, 6.15; N, 10.05.

ESI-MS measurements of selected compounds

1	$C_{17}H_{30}N_4SnNa^+$	calc. 433.1387[M+Na] ⁺	found	433.1383	(3.94%);
	$C_{17}H_{30}NSn^+$	calc. 368.1397 $[M-N_3]^+$	found	368.1397	(100%).
2	$C_{21}H_{22}N_4SnNa^+$	calc. 473.0762 [M+Na] ⁺	found	473.0750	(2.87%);
	$C_{21}H_{22}NSn^+$	calc. 408.0772 $[M-N_3]^+$	found	408.0770	(100%).
3	$C_{22}H_{33}N_5SnNa^+$	calc. 510.1653 [M+Na] ⁺	found	510.1638	(9.26%);
	$C_{22}H_{33}N_2Sn^+$	calc. 445.1664 [M-N ₃] ⁺	found	445.1653	(100%).
4	$C_{13}H_{21}N_7SnNa^+$	calc. 418.0774 [M+Na] ⁺	found	418.0772	(7.00%);
	$C_{26}H_{42}N_2O_2Sn_2H^+$	calc. 653.1367 [2M-4(N ₃)+	$O_2+H]^+$	found 653.1355	(100%).
5	$C_{15}H_{17}N_7SnNa^+$	calc. 438.0461 [M+Na] ⁺	found	438.0461	(8.24%);
	$C_{30}H_{34}N_2O_2Sn_2H^+$	calc. 693.0742[2M-4(N ₃)+0	$O_2 + H]^+$	found 693.0736	(100%).
6	$C_{18}H_{24}N_8SnNa^+$	calc. 495.1041 [M+Na] ⁺	found	495.1045	(19.20%);
	$C_{18}H_{24}N_5Sn^+$	calc. 430.1051 [M-N ₃] ⁺	found	430.1042	(100%).
7	$C_{19}H_{33}N_5SnNa^+$	calc. 474.1653 [M+Na] ⁺	found	474.1673	(10.56%);
	$C_{17}H_{30}NSn^+$	calc. 368.1397 [M-C ₂ H ₃ N ₄] ⁺ found	368.1395	(100%).
8	$C_{23}H_{25}N_5SnH^+$	calc. 492.1208 [M+H] ⁺	found	492.1202	(1.07%);
	$C_{21}H_{22}NSn^+$	calc. 408.0772 [M-C ₂ H ₃ N ₄] ⁺ found	408.0772	(100%).
10	$C_{26}H_{31}N_5SnNa^+$	calc. 556.1498 [M+Na] ⁺	found	556.1500	(0.74%);
	$C_{21}H_{22}NSn^+$	calc. 408.0772 [M-C ₅ H ₉ N ₄] ⁺ found	408.0772	(100%).
11	$C_{24}H_{35}N_5SnNa^+$	calc. 536.1810 [M+Na] ⁺	found	536.1804	(4.33%);
	$C_{17}H_{30}NSn^+$	calc. 368.1397 [M-C ₇ H ₅ N ₄] ⁺ found	368.1398	(100%).

MS spectra in the positive mode exhibit $[M+Na]^+$ peaks with characteristic isotopic tin envelope. In the compounds containing one azido group (1-3) (even after the incorporation of nitriles - compounds 7, 8, 10 and 11) very stable cations of $[M-N_3]^+$ or $[M-RCN_4]^+$, respectively, are formed. The formation of dimeric cationic species with coordination of oxygen or carbon dioxide molecules (*i.e.* $[RL_2Sn-O-SnL_2R+H]^+$) is common. In the MS spectra of compounds containing two azido groups (4-6), the preferential loss of $-N_3$ was observed only in the case of 6. In 4 and 5, except $[M+Na]^+$ peaks, the dimeric structures with coordination of various neutral species are more pronounced. The MS/MS studies revealed, that after release of $-N_3/-RCN_4$ group, in the *n*-butyltin derivatives (**1**, **3**, **4**, **7** and **11**, respectively) the butyl group is lost first leading to the formation of $L^{CN}Sn^+$ cations. When two ligands are present (**3**), $L^{CN}SnTropylium^+$ cation can be observed. In the phenyltin derivatives (**2**, **5**, **8** and **10**), after the loss of the $-N_3/-RCN_4$ group, the loss of dimethylamine and formation of the PhSnTropylium⁺ species is preferred. In the case of compound **6**, similar ionisation mechanism (*via* the release of the dimethylamine group) was observed.

	$L^{CN}Ph_2SnN_3$	$L^{CN}(n-Bu)Sn(N_3)_2$	$(L^{CN})_2 Sn(N_3)_2$	
Compound	.(2)	·(4)	·(6)	
Empirical formula	$C_{21}H_{22}N_4Sn$	$C_{13}H_{21}N_7Sn$	$C_{18}H_{24}N_8Sn$	
Crystal system	monoclinic	orthorhombic	monoclinic	
Formula weight	449.12	394.06	471.14	
Space group	$P2_{1}/c$	Pbca	$P2_{1}/c$	
a (Å)	8.7010(5)	13.3890(9)	9.9650(6)	
b (Å)	14.8150(6)	15.3861(13)	14.0700(6)	
c (Å)	17.4601(9)	15.9340(7)	16.8031(11)	
α (°)	90	90	90	
β (°)	118.559(5)	90	120.993(6)	
γ (°)	90	90	90	
Z	4	8	4	
V (Å ³)	1976.9(2)	3282.5(4)	2019.6(2)	
$D_{c}(g.cm^{-3})$	1.509	1.595	1.550	
Crystal size (mm)	0.58 x 0.44 x 0.27	0.46 x 0.10 x 0.10	0.57 x 0.40 x 0.32	
Crystal shape	block	needle	block	
μ (mm ⁻¹)	1.304	1.562	1.285	
F(000)	904	1584	952	
he let I range	-11, 11; -19, 17;	-15, 17; -19, 18;	-11, 12; -18, 17;	
n, k, i range	-22, 20	-20, 17	-21, 20	
θ range (°)	2.99 - 27.48	2.39 - 27.50	2.02 - 27.50	
Reflections measured	23121	20863	16394	
- independent $(R_{int})^{a}$	4442	3739	4568	
- observed [I>2 σ (I)]	3974	2724	4049	
Parameters refined	235	190	244	
Max/min τ (eÅ ⁻³)	0.598 / -0.524	0.887 / -0.847	1.325 / -0.646	
GOF ^{b)}	1.216	1.168	1.195	
$\mathbf{R}^{(c)}$ / $\mathbf{wR}^{(c)}$	0.0189 / 0.0441	0.0246 / 0.0486	0.0298 / 0.0691	

Table S2: Selected crystallographic data of 2, 4 and 6

 $\frac{a R_{\text{int}} = \Sigma \left| F_0^2 - F_{\text{o,mean}}^2 \right| / \Sigma F_0^2, \ ^b S = \left[\Sigma (w(F_0^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}}) \right]^{\frac{1}{2}}, \ ^c \text{ Weighting scheme: } w = \left[\sigma^2 (F_0^2) + (w_1 P)^2 + w_2 P \right]^{-1}, \text{ where } P = \left[\max(F_0^2) + 2F_c^2 \right], \ R(F) = \Sigma \left| \left| F_0 \right| - \left| F_c \right| \right| / \Sigma \left| F_0 \right|, \ wR(F^2) = \left[\Sigma (w(F_0^2 - F_c^2)^2) / (\Sigma w(F_0^2)^2) \right]^{\frac{1}{2}}$

Compound	<i>C</i> , <i>N</i> -chelated diphenyltin(IV)	<i>C</i> , <i>N</i> -chelated diphenyltin(IV)	<i>C</i> , <i>N</i> -chelated di- <i>n</i> -butyltin(IV)
Compound	5-methyltetrazol-1-ide (8)	5- <i>tert</i> -butyltetrazol-2-ide (10)	5-phenyltetrazol-2-ide (11)
Empirical formula	$3(C_{23}H_{25}N_5Sn)\cdot 2CHCl_3\cdot H_2O$	$C_{26}H_{31}N_5Sn$	$C_{24}H_{35}N_5Sn$
Crystal system	triclinic	monoclinic	monoclinic
Formula weight	1727.26	532.25	512.26
Space group	<i>P</i> -1	<i>C</i> 2/c	$P2_{1}/c$
a (Å)	10.9088(9)	32.4123(5)	10.0490(3)
b (Å)	13.3100(7)	9.6582(3)	13.4371(12)
c (Å)	28.147(3)	16.3820(3)	18.4539(10)
α (°)	81.282(7)	90	90
β (°)	80.812(8)	103.131(2)	103.310(4)
γ (°)	68.233(8)	90	90
Z	2	8	4
V (Å ³)	3727.8(6)	4994.2(2)	2424.9(3)
$D_{c}(g.cm^{-3})$	1.539	1.416	1.403
Crystal size (mm)	0.54 x 0.36 x 0.25	0.33 x 0.24 x 0.20	0.25 x 0.25 x 0.22
Crystal shape	block	block	block
μ (mm ⁻¹)	1.266	1.045	1.073
F(000)	1740	2176	1056
h. k. 1 ranga	-14, 14; -17, 17;	-41, 42; -12, 12;	-13, 11; -15, 17;
n, k, i tange	-36, 36	-20, 21	-23, 23
θ range (°)	1.473 - 27.499	2.21 - 27.50	1.89 - 27.48
Reflections measured	68944	20709	24210
- independent $(R_{int})^{a}$	16321	5625	5443
- observed [I>2 σ (I)]	15203	4845	4517
Parameters refined	868	289	271
Max/min τ (eÅ ⁻³)	3.743 / -3.528	0.979 / -0.878	0.524 / -0.546
GOF ^{b)}	1.054	1.142	1.146
$\mathbf{R}^{(c)}$ / $\mathbf{w}\mathbf{R}^{(c)}$	0.0548 / 0.1229	0.0244 / 0.0539	0.0256 / 0.0506

Table S3: Selected crystallographic data of 8, 10 and 11

 ${}^{a} R_{\text{int}} = \Sigma \left| F_{\text{o}}^{2} - F_{\text{o,mean}}^{2} \right| / \Sigma F_{\text{o}}^{2}, {}^{b} S = \left[\Sigma (w(F_{\text{o}}^{2} - F_{\text{c}}^{2})^{2}) / (N_{\text{diffrs}} - N_{\text{params}}) \right]^{\frac{1}{2}}, {}^{c} \text{ Weighting scheme: } w = \left[\sigma^{2}(F_{\text{o}}^{2}) + (w_{1}P)^{2} + w_{2}P \right]^{-1}, \text{ where } P = \left[\max(F_{\text{o}}^{2}) + 2F_{\text{c}}^{2} \right], R(F) = \Sigma \left| F_{\text{o}} \right| - \left| F_{\text{c}} \right| / \Sigma \left| F_{\text{o}} \right|, wR(F^{2}) = \left[\Sigma (w(F_{\text{o}}^{2} - F_{\text{c}}^{2})^{2}) / (\Sigma w(F_{\text{o}}^{2})^{2}) \right]^{\frac{1}{2}}$

Fig. S6: M06 /cc-pVDZ(-pp) optimized geometries of compounds **8**, **10**, **11** and **14** along with relative Gibbs free energies (kcal mol^{-1}) for different regioisomers.

Fig. S7: M06 /cc-pVDZ(-pp) optimized geometries of compounds **15** and **16** along with corresponding Gibbs free energy of its formation (kcal mol^{-1}).

	$\Delta \mathbf{E}$	$\Delta \mathbf{E^{solv}}$	$\Delta \mathbf{E}$	$\Delta \mathbf{G}$	$\Delta \mathbf{G^{solv}}$
	(cc-pVDZ)	(cc-pVDZ)	(cc-pVTZ)	(cc-pVTZ)	(cc-pVTZ)
	[kcal·mol⁻¹]	[kcal·mol ⁻¹]	[kcal·mol ⁻¹]	[kcal·mol ⁻¹]	[kcal·mol ⁻¹]
2@8	-26.1	-27.2	-18.0	-0.6	-1.7
2@8'	-27.3	-27.2	-18.7	-1.4	-1.3
2@10	-29.3	-28.8	-20.5	-2.5	-2.0
2@10'	-26.6	-26.5	-18.5	1.3	1.3
1@11	-33.3	-33.9	-24.2	-4.6	-5.2
1@11'	-29.1	-30.0	-21.2	-2.3	-3.2
2@14	-33.2	-33.0	-24.7	-5.4	-5.3
2@14'	-29.5	-29.5	-20.7	-2.3	-2.3
14 @14a	-11.0	-13.4	-12.3	-13.6	-16.0
14' @14a '	-14.7	-15.4	-15.5	-16.0	-16.7
1@15	-75.4	-75.5	-67.3	-46.9	-47.0
1@15'	-64.8	-63.8	-56.0	-36.9	-35.9
1@15"	-61.9	-62.2	-53.6	-35.8	-36.1
2@16	-72.7	-72.4	-63.6	-44.4	-44.1
2@16'	-64.6	-63.8	-54.7	-35.3	-34.4
2@16"	-62.6	-62.8	-53.6	-36.1	-36.3

Table S4: Energy and Gibbs free energy differences for reaction steps displayed in Scheme 2 and Scheme 3

Table S5: Comparison of theoretical and experimental values of the relevant geometrical datafor compounds 8, 10 and 11.

	Distance [Å] / Angle [°]				Distance [Å] /	Angle [°]	
		Exp.	Calc.			Exp.	Calc.
8	Sn1-N1	2.448(5)	2.648		N1-Sn1-N2	167.50(7)	164.219
	Sn1-N2	2.254(5)	2.183		Sn1-N2-N3	126.52(15)	126.16
	N2-N3	1.353(6)	1.355		N2-N3-N4	107.59(18)	107.64
	N3-N4	1.304(7)	1.292		N3-N2-N5	111.43(18)	112.01
	N4-N5	1.343(7)	1.348		N3-N4-C10	105.82(18)	105.76
	N2-C22	1.341(7)	1.349		N2-N5-C10	103.41(18)	102.75
	N5-C22	1.322(7)	1.325		C1-Sn1-C15	123.10(8)	123.25
	Sn1-C1	2.134(5)	2.150		C1-Sn1-C21	117.80(9)	116.70
	Sn1-C10	2.132(4)	2.140		C15-Sn1-C21	116.66(9)	115.50
	Sn1-C16	2.121(5)	2.145		N1-Sn1-N2	167.50(7)	164.22
	N1-Sn1-N2	170.97(14)	165.79				
	Sn1-N2-N3	114.2(3)	113.92	11	Sn1-N1	2.480(2)	2.634
	N2-N3-N4	108.1(4)	107.92		Sn1-N2	2.280(2)	2.220
	N3-N4-N5	110.2(4)	110.64		N2-N3	1.319(3)	1.322
	N4-N5-C22	105.6(5)	105.69		N3-N4	1.332(3)	1.310
	N2-C22-N5	110.4(4)	109.55		N2-N5	1.344(3)	1.331
	C22-N2-N3	105.7(4)	106.19		N4-C10	1.346(3)	1.352
	C1-Sn1-C10	124.57(18)	127.19		N5-C10	1.332(3)	1.335
	C1- Sn1-C16	114.60(18)	113.81		Sn1-C1	2.138(2)	2.155
	C10-Sn1-C16	119.25(19)	114.407		Sn1-C17	2.144(2)	2.164
					Sn1-C21	2.141(2)	2.159
10	Sn1-N1	2.522(2)	2.684		N1-Sn1-N2	166.37(7)	169.21
	Sn1-N2	2.2218(19)	2.193		Sn1-N2-N3	123.29(15)	125.43
	N2-N3	1.321(3)	1.326		N2-N3-N4	108.21(19)	107.75
	N3-N4	1.331(3)	1.310		N3-N2-N5	111.22(19)	112.13
	N2-N5	1.343(3)	1.333		N3-N4-C10	105.20(19)	105.76
	N4-C10	1.345(3)	1.354		N2-N5-C10	103.21(18)	102.65
	N5-C10	1.329(3)	1.330		C1-Sn1-C17	126.61(9)	117.53
	Sn1-C1	2.123(2)	2.151		C1-Sn1-C21	117.30(8)	117.41
	Sn1-C15	2.126(2)	2.143		C17-Sn1-C21	119.85(9)	122.67
	Sn1-C21	2.119(2)	2.139				