Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New Journal of Chemistry article

Oxaazamacrocycles incorporating quinoline moiety: synthesis and study of their binding properties towards metal cations

A. S. Abel, A. D. Averin and I. P. Beletskaya

M.V. Lomonosov Moscow State University, Department of Chemistry, 1-3 Leninskie gory, Moscow, 119991, Russia; e-mail: <u>beletska@org.chem.msu.ru</u>

Supporting information

Table of contents

1.	Studies of binding metal ions by 5a		S2
	1.1.	Fluorometric and UV-vis studies of binding metal ions by 5a	S2
	1.2.	Fluorimetric and spectrophotometric titrations of $5a$ with Cu^{2+} ions	<u></u> S3
	1.3.	Fluorimetric and spectrophotometric titrations of $5a$ with Al ³⁺ ions	<u></u> S5
2.	Stu	dies of binding metal ions by 5b	S7
	2.1.	Fluorometric and UV-vis studies of binding metal ions by 5b	S7
3.	Studie	es of binding metal ions by 5c	S8
	3.1.	Fluorometric and UV-vis studies of binding metal ions by 5c	S8
	3.2.	Fluorimetric and spectrophotometric titrations of $5c$ with Cu^{2+} ions	S11
4.	Studie	es of binding metal ions by 10	S14
	4.1.	Fluorometric and UV-vis studies of binding metal ions by 10	<u></u> S14
	4.2.	Fluorimetric and spectrophotometric titrations of 10 with Cu ²⁺ ions	<u></u> S15
	4.3.	Fluorimetric and spectrophotometric titrations of 10 with Zn ²⁺ ions	<u></u> S18
	4.4.	NMR titration of 10 with Zn ²⁺ ions	<u></u> S20
5.	Supposed mechanism of quenching fluorescence of ligands 10 and 5c		S22
6.	NMR spectraS23		
7.	ReferencesS31		

1. Studies of binding metal ions by 5a

1.1 Fluorimetric and UV-vis studies of binding metal ions by 5a

Figure S1. Fluorescence spectra of **5a** ([**5a**] = 26 μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN (λ_{ex} = 397 nm).

Figure S2. UV-vis spectra of **5a** ([**5a**] = 26μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN.

1.2 Fluorimetric and spectrophotometric titrations of 5a with Cu²⁺ ions

Figure S3. Evolution of fluorescence spectrum of **5a** (26 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0 - 2.2 equiv.) (λ_{ex} = 397 nm).

Figure S4. (a) Changes of emission intensities at 488 nm plotted against $[Cu(ClO_4)_2]/[5a]_{tot}$. (b) Job's plot derived from the titration curve².

$$\begin{split} \text{Stability constants calculated using SPECFIT}^1 \\ lg(\beta_{Cu(\textbf{5a})2}) &= 11.7 \pm 0.5 \text{ , } lg(\beta_{Cu(\textbf{5a})}) = 7.0 \pm 0.5 \end{split}$$

Figure S5. (a) Evolution of UV–vis spectrum of **5a** (394 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0 - 1.3 equiv.). (b) UV-vis spectra of **5a** (red), [Cu(**5a**)₂]²⁺ (green) and [Cu(**5a**)]²⁺ (magenta) calculated using SPECFIT¹. (c) Species distribution diagram for the Cu²⁺/**5a** system in CH₃CN calculated using SPECFIT¹.

Figure S6. (a) Changes of absorbance at 395 nm plotted against $[Cu(ClO_4)_2]/[5a]_{tot}$. (b) Job's plot derived from the titration curve².

Stability constants calculated using SPECFIT¹ $lg(\beta_{Cu(5a)2}) = 10.5\pm0.3$, $lg(\beta_{Cu(5a)}) = 6.3\pm0.3$ 1.3 Fluorimetric and spectrophotometric titrations of 5a with Al^{3+} ions

Figure S7. Evolution of fluorescence spectrum of **5a** (26 μ M solution in CH₃CN) upon addition of Al(ClO₄)₃ (0 - 1.2 equiv.) (λ_{ex} = 397 nm).

Figure S8. (a) Changes of emission intensities at 488 nm plotted against $[Al(ClO_4)_3]/[5a]_{tot}$. (b) Job's plot derived from the titration curve².

Stability constants calculated using SPECFIT¹ $lg(\beta_{Al(5a)2}) = 11.85\pm0.05$

Figure S9. (a) Evolution of UV–vis spectrum of **5a** (26 μ M solution in CH₃CN) upon addition of Al(ClO₄)₃ (0 - 1.1 equiv.); (b) Normalized UV-vis spectra of **5a** (red) and [Al(**5a**)₂]³⁺ (green) calculated using SPECFIT¹. (c) Species distribution diagram for the Al³⁺/**5a** system in CH₃CN calculated using SPECFIT¹

Figure S10. (a) Changes of absorbance at 395 nm plotted against $[Al(ClO_4)_3]/[5a]_{tot}$. (b) Job's plot derived from the titration curve².

 $lg(\beta_{Al(\textbf{5a})2}) = 11.15 \pm 0.07$

2. Studies of binding metal ions by 5b

2.1 Fluorimetric and UV-vis studies of binding metal ions by 5b

Figure S11. Fluorescence spectra of **5b** ([**5b**] = 24 μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN (λ_{ex} = 395 nm).

Figure S12. UV-vis spectra of **5b** ([**5b**] = 24μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN.

3. Studies of binding metal ions by 5c

3.1 Fluorimetric and UV-vis studies of binding metal ions by 5c

Figure S13. Fluorescence spectra of **5c** ([**5c**] = 24 μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN (λ_{ex} = 385 nm).

Figure S14. UV-vis spectra of **5c** ([**5c**] = 24μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN.

Figure S15. Absorbance of **5c** (24 μ M solution in CH₃CN) in the presence of different metal ions (4 equiv.) at different wavelengths: (a) 390 nm, (b) 288 nm.

Figure S16. Cross-selectivity studies of metal ion binding by ligand **5c** (24 μ M solution in CH₃CN, λ_{ex} = 385 nm) using fluorescrence spectroscopy:

(S_1) emission spectrum of 5c,

 (S_2) emission spectrum of 5c after addition of Cu^{2+} (1 equiv.),

(**S_3**) emission spectrum of **5c** after addition of Li^+ , Na^+ , K^+ , Mg^{2+} , Ca^{2+} , Ba^{2+} (1 equiv. of each metal ion),

(**S_4**) emission spectrum of **5c** after addition of Li^+ , Na^+ , K^+ , Mg^{2+} , Ca^{2+} , Ba^{2+} (1 equiv. of each metal ion) and Cu^{2+} (1 equiv.)

 (S_5) emission spectrum of 5c after addition of Fe²⁺, Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺(1 equiv. of each metal ion),

(**S_6**) emission spectrum of **5c** after addition of Fe^{2+} , Mn^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} (1 equiv. of each metal ion) and Cu^{2+} (1 equiv.)

 (S_7) emission spectrum of **5c** after addition of Al³⁺ (1 equiv.),

(S_8) emission spectrum of 5c after addition of Al^{3+} (1 equiv) and Cu^{2+} (1 equiv.)

(S_9) emission spectrum of 5c after addition of Ag^{2+} , Hg^{2+} , Cd^{2+} , Pb^{2+} (1 equiv. of each metal ion),

(**S_10**) emission spectrum of **5c** after addition of Ag^{2+} , Hg^{2+} , Cd^{2+} , Pb^{2+} (1 equiv. of each metal ion) and Cu^{2+} (1 equiv.)

Figure S17. Cross-selectivity studies of metal ion binding by ligand **5c** (24 μ M solution in CH₃CN, λ_{ex} = 385 nm) using UV-vis spectroscopy:

(S_1) UV-vis spectrum of 5c,

(S_2) UV-vis spectrum of 5c after addition of Cu^{2+} (1 equiv.),

(**S_3**) UV-vis spectrum of **5c** after addition of Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺ (1 equiv. of each metal ion), (**S_4**) UV-vis spectrum of **5c** after addition of Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺ (1 equiv. of each metal ion) and Cu²⁺ (1 equiv.)

(S_5) UV-vis spectrum of 5c after addition of Fe²⁺, Mn^{2+} , Co^{2+} , Ni^{2+} , $Zn^{2+}(1 \text{ equiv. of each metal ion})$,

(**S_6**) UV-vis spectrum of **5c** after addition of Fe²⁺, Mn^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} (1 equiv. of each metal ion) and Cu²⁺ (1 equiv.)

(S_7) UV-vis spectrum of 5c after addition of Al^{3+} (1 equiv.),

(S_8) UV-vis spectrum of 5c after addition of Al^{3+} (1 equiv.) and Cu^{2+} (1 equiv.)

(**S_9**) UV-vis spectrum of **5c** after addition of Ag^{2+} , Hg^{2+} , Cd^{2+} , Pb^{2+} (1 equiv. of each metal ion),

(**S_10**) UV-vis spectrum of **5c** after addition of Ag^{2+} , Hg^{2+} , Cd^{2+} , Pb^{2+} (1 equiv. of each metal ion) and Cu^{2+} (1 equiv.).

3.2 Fluorimetric and spectrophotometric titrations of 5c with Cu^{2+} ions

Figure S18. Evolution of fluorescence spectrum of **5c** (24 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0 - 1.2 equiv.) (λ_{ex} = 385 nm).

Figure S19. (a) Changes of emission intensities at 505 nm plotted against $[Cu(ClO_4)_2]/[5c]_{tot}$. (b) Job's plot derived from the titration curve².

Stability constants calculated using SPECFIT¹

 $lg(\beta_{Cu(5c)2}) = 14.5 \pm 0.3$, $lg(\beta_{Cu(5c)}) = 8.0 \pm 0.2$

Figure S20. (a) Evolution of UV–vis spectrum of **5c** (60 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0 - 2.3 equiv.). (b) UV-vis spectra of **5c** (red), [Cu(**5c**)₂]²⁺ (green) and [Cu(**5c**)]²⁺ (magenta) calculated using SPECFIT¹. (c) Species distribution diagram for the Cu²⁺/**5c** system in CH₃CN calculated using SPECFIT¹.

Figure S21. (a) Changes of absorbance at 311 nm plotted against $[Cu(ClO_4)_2]/[5c]_{tot}$. (b) Job's plot derived from the titration curve².

Figure S22. (a) Changes of absorbance at 385 nm plotted against $[Cu(ClO_4)_2]/[5c]_{tot}$. (b) Job's plot derived from the titration curve².

 $lg(\beta_{Cu(\textbf{5c})2})$ = 14.5±0.2 , $lg(\beta_{Cu(\textbf{5c})})$ = 8.4±0.2

4. Studies of binding metal ions by 10

4.1. Fluorimetric and UV-vis studies of binding metal ions by 10

Figure S23. Fluorescence spectra of **10** ([**10**] = 20 μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN (λ_{ex} = 390 nm).

Figure S24. UV-vis spectra of **10** ([**10**] = 20 μ M) in CH₃CN before and after addition of 4 equiv. of metal perchlorates in CH₃CN.

4.2 Fluorimetric and spectrophotometric titrations of 10 with Cu²⁺ ions

Figure S25. (a) Evolution of fluorescence spectrum of **10** (9 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0 - 0.5 equiv.) (λ_{ex} = 390 nm). (b) Evolution of luminescence spectrum of **10** (9 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0.5 - 5.7 equiv.) (λ_{ex} = 390 nm).

Figure S26. Changes of emission intensities at 478 nm plotted against $[Cu(ClO_4)_2]/[10]_{tot}$. Stability constants calculated using SPECFIT¹ $lg(\beta_{Cu(10)2}) = 11.3\pm0.2$, $lg(\beta_{Cu(10)}) = 6.1\pm0.1$

Figure S27. Evolution of UV–vis spectrum of **10** (54 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0 - 0.5 equiv.). (b) Evolution of UV–vis spectrum of **10** (54 μ M solution in CH₃CN) upon addition of Cu(ClO₄)₂ (0.5 - 2.2 equiv.). (c) UV-vis spectra of **10** (red), [Cu(**10**)₂]²⁺ (green) and [Cu(**10**)]²⁺ (magenta) calculated using SPECFIT¹. (d) Species distribution diagram for the Cu²⁺/**10** system in CH₃CN calculated using SPECFIT¹.

Figure S28. (a) Changes of absorbance at 390 nm plotted against $[Cu(ClO_4)_2]/[10]_{tot}$. (b) Job's plot derived from the titration curve².

 $lg(\beta_{Cu(10)2})$ = 11.7±0.2 , $lg(\beta_{Cu(10)})$ = 6.4±0.1

Figure S29. Evolution of fluoresence spectrum of **10** (9 μ M solution in CH₃CN) upon addition of Zn(ClO₄)₂ (0 - 1.5 equiv.) (λ_{ex} = 390 nm).

Figure S30. (a) Changes of emission intensities at 478 nm plotted against $[Zn(ClO_4)_2]/[10]_{tot}$. (b) Job's plot derived from the titration curve².

 $lg(\beta_{Zn(10)4}) = [19.9], lg(\beta_{Zn(10)2}) = 10.7 \pm 0.4$

Figure S31. (a) Evolution of UV–vis spectrum of **10** (54 μ M solution in CH₃CN) upon addition of Zn(ClO₄)₂ (0 - 0.6 equiv.). (b) UV-vis spectra of **10** (red), [Zn(**10**)₄]²⁺ (green) and [Zn(**10**)₂]²⁺ (magenta) calculated using SPECFIT¹. (c) Species distribution diagram for the Zn²⁺/**10** system in CH₃CN calculated using SPECFIT¹.

Figure S32. (a) Changes of absorbance at 390 nm plotted against $[Zn(ClO_4)_2]/[10]_{tot}$. (b) Job's plot derived from the titration curve².

 $lg(\beta_{Zn(10)4}) = 20.0 \pm 0.4$, $lg(\beta_{Zn(10)2}) = 11.9 \pm 0.2$

Figure S33. 400 MHz H NMR spectra of 10 in CD₃CN at 298 K before (a) and after addition of 0.1 (b), 0.2 (c), 0.3 (d), 0.4 (e), 0.5 (f), 0.6 (g), 0.7 (h) and 0.8 (i) equiv. of zinc perchlorate.

Figure S34. Changes of the chemical shift of NH-proton plotted against $[Zn(ClO_4)_2]/[10]_{tot}$.

Figure S35. Changes of the chemical shift of CH_2O -proton plotted against $[Zn(ClO_4)_2]/[10]_{tot}$.

Figure S36. Changes of the chemical shift of H⁸(Quin)-proton plotted against [Zn(ClO₄)₂]/[10]_{tot}.

5. Supposed mechanism of quenching fluorescence of ligands 10 and 5c

Supposed mechanism of quenching luminescence of ligand 10 by Cu²⁺ ions

Supposed mechanism of quenching luminescence of ligand 5c by Cu^{2+} ions

6. NMR spectra

Figure S37. ¹H NMR spectrum of **4** (CDCl₃, 400MHz, 300K).

Figure S38. ¹³C NMR spectrum of **4** (CDCl₃, 400MHz, 300K). (4 quaternary carbon atoms were not unambiguously assigned because of broadening of the signals and low concentration)

Figure S39. ¹H NMR spectrum of **5a** (CDCl₃, 400MHz, 300K).

Figure S40. ¹³C NMR spectrum of 5a (CDCl₃, 400MHz, 300K).

Figure S41. ¹H NMR spectrum of 5b (CDCl₃, 400MHz, 300K).

Figure S42. ¹³C NMR spectrum of **5b** (CDCl₃, 400MHz, 300K).

Figure S43. ¹H NMR spectrum of 5c (CDCl₃, 400MHz, 300K).

Figure S44. 13 C NMR spectrum of 5c (CDCl₃, 400MHz, 300K).

Figure S45. ¹H NMR spectrum of 6 (CDCl₃, 400MHz, 300K).

Figure S46. ¹³C NMR spectrum of 6 (CDCl₃, 400MHz, 300K).

Figure S47. ¹H NMR spectrum of **7** (CDCl₃, 400MHz, 300K).

Figure S48. ¹³C NMR spectrum of 7 (CDCl₃, 400MHz, 300K).

Figure S49. ¹H NMR spectrum of **8** (CDCl₃, 400MHz, 300K).

Figure S50. 1 H NMR spectrum of 10 (CDCl₃, 400MHz, 300K).

Figure S51. ¹³C NMR spectrum of 10 (CDCl₃, 400MHz, 300K).

7. References

- 1 R. A. Binstead, B. Jung, A. D. Zuverbühler, SPECFIT/32, Global Analysis System, ver 3.0; Spectrum Software Associates: Marlborough, USA 2000.
- 2 P. MacCarthy, Anal. Chem., **1978**, 50, 14, 2165.