Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Material

Glutathione-directed synthesis of Cr(VI)- and temperature-

responsive fluorescent copper nanoclusters and their

applications in cellular imaging

Lingcan Kong,^{a*} Xuefeng Chu,^b Wenwei Liu,^a Yuyang Yao,^a Pengfei Zhu^a and Xia Ling^{a*}

^aWuxi Center for Disease Control and Prevention, Wuxi 214023, P.R. China

^bDepartment of Basic Science, Jilin Jianzhu University, Changchun 130118,

P. R. China

Email: konglingcan2010@163.com

wxcdclingxia@sina.com

Figure S1 The solid of as-prepared Cu NCs at the room temperature (left) and under a 365 nm UV light source (right).

Figure S2 The FT-IR spectra of pure glutathione (a) and as-prepared Cu NCs (b) which confirm that the surface of as-prepared Cu NCs was protected by glutathione. (c) The FT-IR spectra of freeze-dried Cu NCs solid prepared by Cu NCs aqueous solution stirring for five minutes upon addition $K_2Cr_2O_7$ to 36 µmol·L⁻¹ and then freeze-dried.

Figure S3 Fluorescence spectra of Cu NCs responses to pH ranging from 3 to 13.

Figure S4 a) The normalized absorbance spectrum of potassium permanganate aqueous solution.b) The normalized excitation spectrum of Cu NCs aqueous solution.

Figure S5 XPS spectra of as-prepared Cu NCs prepared by Cu NCs aqueous solution stirring for five minutes upon addition $K_2Cr_2O_7$ to 36 µmol·L⁻¹ and then freeze-dried: a) Cu 2p; b) S 2p; c) C 1s; d) N 1s.

Figure S6 a) Emission spectral changes of Cu NCs in tap water upon addition of different amounts of $Cr_2O_7^{2-}$ ions (0, 4.5, 9, 13.5, 18, 22.5, 27, 31.5, 36 µmol·L⁻¹). b) Linear relationship between the logarithm of emission intensity and the concentration of $Cr_2O_7^{2-}$ ions.

Figure S7 a) Emission spectral changes of Cu NCs in mineral water upon addition of different amounts of $Cr_2O_7^{2-}$ ions (0, 4.5, 9, 13.5, 18, 22.5, 27, 31.5, 36 µmol·L⁻¹). b) Linear relationship between the logarithm of emission intensity and the concentration of $Cr_2O_7^{2-}$ ions.

Figure S8 a) Emission spectral changes of Cu NCs in Taihu lake water upon addition of different

amounts of $Cr_2O_7^{2-}$ ions (0, 4.5, 9, 13.5, 18, 22.5, 27, 31.5, 36 μ mol·L⁻¹). b) Linear relationship between the logarithm of emission intensity and the concentration of $Cr_2O_7^{2-}$ ions.

Figure S9 Emission intensity changes upon alternating temperatures between 288 K and 313 K.