Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary information

Experimental and theoretical study of intramolecular regioselective oxidations of 6-substituted 2,3-dimethylquinoxaline derivatives

Javier Peralta-Cruz,¹ Mónica Díaz-Fernández, Alberto Ávila-Castro

Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y plan de Ayala S/N, Colonia Santo Tomás, 11340 Ciudad de México, México.

David Ortegón-Reyna, Armando Ariza-Castolo*

Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, Ciudad de México, México.

Content:

I. General remarks and synthesis	S3
II. Spectroscopy characterization	S4
II.a ¹ H NMR spectrum analysis of Compound 1 .	S4
II.b ¹⁵ N chemical shift determination	S4
2,3-Dimethylquinoxaline (1)	S5
2,3-Dimethyl-6-nitroquinoxaline (2)	S6
2,3-Dimethyl-6-chloroquinoxaline (6)	S7
2,3-Dimethyl-6-bromoquinoxaline (7)	S 8
2,3-Dimethylquinoxaline-6-carboxylic acid (8)	S9
Methyl 2,3-dimethylquinoxaline-6-carboxylate (9)	S10
(2,3-dimethyl-6-quinoxalinyl)phenyl-methanone (10)	S11
2,2',3,3'-Tetramethyl-6,6'-biquinoxaline (11)	S12
III. Spectrometric NMR titration	S13
2,3-Dimethylquinoxaline (1)	S13
2,3-Dimethyl-6-nitroquinoxaline (2)	S13
2,3-Dimethyl-6-chloroquinoxaline (6)	S13
2,3-Dimethyl-6-bromoquinoxaline (7)	S14
2,3-Dimethylquinoxaline-6-carboxylic acid (8)	S14

¹ Corresponding authors: <u>iperalta@ipn.mx</u>, <u>aariza@cinvestav.mx</u>

Methyl 2,3-dimethylquinoxaline-6-carboxylate (9)	S14					
(2,3-dimethyl-6-quinoxalinyl)phenyl-methanone (10)	S15					
2,2',3,3'-Tetramethyl-6,6'-biquinoxaline (11)						
IV. Computational chemistry						
Table 1S. Bond length (Å) of 2,3-dimethyl-6R-quinoxalines optimized with DFT	S16					
ω B97XD/6-311++(d,p) level theory						
Table 2S . Angles (°, \angle_{NCC}) of 2,3-dimethyl-6R-quinoxalines optimized with	S16					
DFT ω B97XD/6-311++(d,p) level theory						
2,3-Dimethylquinoxaline (1)	S18					
2,3-Dimethyl-6-nitroquinoxaline (2)	S20					
6-carbonitrile-2,3-dimethylquinoxaline (3)	S22					
2,3-Dimethyl-6-(trifluoromethyl)quinoxaline (4)	S24					
2,3-Dimethyl-6-fluoroquinoxaline (5)	S26					
2,3-Dimethyl-6-chloroquinoxaline (6)	S28					
2,3-Dimethyl-6-bromoquinoxaline (7)	S30					
2,3-Dimethylquinoxaline-6-carboxylic acid (8)	S32					
Methyl 2,3-dimethylquinoxaline-6-carboxylate (9)	S34					
(2,3-dimethyl-6-quinoxalinyl)phenyl-methanone (10)	S36					
2,2',3,3'-Tetramethyl-6,6'-biquinoxaline (11)	S39					
2,3-Dimethyl-6-methoxyquinoxaline (12)	S42					
6-Hydroxy-2,3-dimethylquinoxaline (13)	S44					
6-Amino-2,3-dimethylquinoxaline (14)	S46					
References	S48					

I. General Remarks and synthesis

Scheme 1 of results and discussion section show the synthesis of compounds with a condensation of diamines with diketones and oxidation using the Wang *et. al.* procedure. The regioisomer ratio of carbaldehydes mixtures **a**:**b** was determine by δ ¹H NMR spectra; however the regioisomer ratio of compounds **8** and **11** were estimated through a correlation between δ ¹H9 of 2,3-dimethyl-6-substituted-quinoxalines and percentage of regioisomer **b** (**Figure 1S**).

Figure 1S. Percentage ratio calculated from a linear relationship of δ^{1} H9 vs. % regioisomers **b** obtained from synthesis. Compound **1** was not considered in the lineal regression. * In this compound the percentage of regioisomers is an approximation, only is considered a ratio of **a**:**b**.

The experimental and theoretical data analysis suggest that carbaldehydes of compound **11** is a mixture of three regioisomers **a**:**b**:**c** (**Figure 2S**) with a 5:3:7 proportional ratio respectively, however only was considered a ratio between **a** and **b** regioisomers for obtain an approximation of the regioisomer percentage, so that the regioisomer **c** was not considered.

Figure 2S. Formation of the regioisomers **a**, **b** and **c** of compound **11**, suggested by experimental and theoretical analysis.

II. Spectroscopy Characterization

II.a¹H NMR spectrum analysis of Compound 1.

The ¹H NMR spectrum was assignment using the SpinWorks¹ software simulated with the NUMARIT algorithm.² The data reported in the experimental section were interactively fit to simulated spectrum. The second order AA'XX' spin-spin coupling system of the aromatic region is presented in above in black is the experimental spectrum and in red is the simulate one.

The experimental resolution of this spectrum was 0.3 Hz recorder at 500 MHz and the RMS = 0.25. $\delta_{\rm H}$ = 7.95 and 7.64, ${}^{5}J_{\rm H,H}(A,A') = 0.7\pm0.3$, ${}^{3}J_{\rm H,H}(A,X = A'X') = 8.6\pm0.3$, ${}^{4}J_{\rm H,H}(A,X' = A'X) = 1.3\pm0.3$ and ${}^{3}J_{\rm H,H}(X,X') = 7.0\pm0.3$ Hz.

II.b ¹⁵N chemical shift determination

The ¹⁵N chemical shift of 2,3-dimethyl-6-substituted-quinoxalines were determined by indirect detection ¹H,¹⁵N using the pfg-HMQC pulse sequence. In order to have a good resolution these spectra were determine in the aliphatic and aromatic regions separately in two spectra. In the methyl group region the ¹H resolution was better than 5 Hz while in ¹⁵N the resolution was better than 2 Hz that correspond to 0.04 ppm. The best results were obtained with a $J_{H,N} = 5$ Hz. The δ_N were determine from the slice of the 2D spectra. For the aromatic region were used the same resolution with a $J_{H,N} = 2$ Hz. Other acquisition parameter as show as example in the spectra slice of compound **6**, **10** and **11**. In some case were recorder too the 1D ¹⁵N NMR using single pulse decoupled as show for compound **2**.

2,3-Dimethylquinoxaline (1).

2,3-Dimethyl-6-nitroquinoxaline (2).

2,3-Dimethyl-6-chloroquinoxaline (6).

2,3-Dimethyl-6-bromoquinoxaline (7).

2,3-Dimethylquinoxaline-6-carboxylic acid (8).

(2,3-dimethyl-6-quinoxalinyl)phenyl-methanone (10).

2,2',3,3'-Tetramethyl-6,6'-biquinoxaline (11).

III. Spectrometric NMR titration

To evaluate the reactivity of compounds and in order to get a better accuracy and a smoother curve titration, is necessary considering the decimals values of the chemical shifts of H9 and H10. Subsequently the *pKa* values are getting with the semilogarithmic Henderson-Hasselbalch equation and the ΔK is obtained using the δ -diagram and the Perrin linearization. The data of 2,3-dimethyl-6R-quinoxalines are showed as follows:

pН	& Н9	δ^{1} H10	pН	δ⁴H9	δ^{1} H10	
7.54	2.5943	2.5943	0.94	2.6748	2.6748	
1.82	2.6042	2.6042	0.91	2.6847	2.6847	
1.53	2.6148	2.6148	0.91	2.6974	2.6974	H
1.4	2.6254	2.6254	0.74	2.708	2.708	
1.25	2.6381	2.6381	0.66	2.7221	2.7221	
1.06	2.6501	2.6501	0.63	2.7334	2.7334	
1.12	2.6621	2.6621	0.57	2.7454	2.7454	

2,3-Dimethylquinoxaline (1).

2,3-Dimethyl-6-nitroquinoxaline (2).

pН	<i>8</i> ¹ Н9	δ^{1} H10	pН	∂ [‡] H9	δ^{1} H10	
6.45	2.6557	2.6557	0.75	2.66068	2.65644	
0.32	2.66279	2.65993	0.65	2.65997	2.6550	
0.49	2.6642	2.66139	0.79	2.6586	2.65357	С
0.53	2.66419	2.66066	0.64	2.65856	2.65288	
0.45	2.66377	2.66023				
0.57	2.66212	2.65821				
0.7	2.66139	2.65715				

2,3-Dimethyl-6-chloroquinoxaline (6).

pН	∂ ⁺ Н9	δ^{1} H10	pН	∂ ¹ Н9	δ^{1} H10	
6.63	2.5512	2.5554	0.73	2.6077	2.6112	
1.36	2.5547	2.5590	0.7	2.6119	2.6155	
0.94	2.5689	2.5731	0.73	2.6162	2.6197	CI
0.77	2.5809	2.5851	0.68	2.6197	2.6225	
0.74	2.5900	2.5936	0.71	2.6232	2.6261	
0.72	2.5971	2.6013	0.7	2.6275	2.6296	
0.67	2.6028	2.6063	0.72	2.6310	2.6331	

pН	& Н9	δ^{1} H10	pН	& Н9	δ^{1} H10	
6.08	2.5484	2.5625	0.7	2.6105	2.6239	
0.92	2.5625	2.5759	0.68	2.6148	2.6282	
0.71	2.5759	2.5900	0.75	2.6176	2.6310	5 4 Br 6 N 3 10
0.76	2.5865	2.5999	0.65	2.6211	2.6338	
0.69	2.5950	2.6084	0.69	2.6239	2.6374	7 N 2 9 8 1
0.66	2.6013	2.6148	0.68	2.6254	2.6388	
0.66	2.6063	2.6197				

2,3-Dimethyl-6-bromoquinoxaline (7).

2,3-Dimethylquinoxaline-6-carboxylic acid (8).

pН	б Н9	δ^{1} H10	pН	∂ ⁺ Н9	δ^{1} H10	
5.25	2.6352	2.6324	0	2.7362	2.7306	-
3.27	2.6360	2.6331	0	2.7426	2.7362	0
0.53	2.6550	2.6522	0	2.7496	2.7433	$\bigcup_{i=1}^{1} 6 \stackrel{5}{\frown} \stackrel{4}{\frown} 10$
0.19	2.6819	2.6776				HO
0.12	2.7002	2.6960				7 N 2 9
0.1	2.7143	2.7094				0 1
0	2.7263	2.7207				

Methyl 2,3-dimethylquinoxaline-6-carboxylate (9).

pН	& Н9	δ^{1} H10	pН	& Н9	δ^{1} H10	
8.43	2.5943	2.5900	0.67	2.6480	2.6423	-
1.4	2.6003	2.5954	0.66	2.6557	2.6501	0
1.12	2.6084	2.6042	0.61	2.6649	2.6586	$1 \qquad \qquad$
1	2.6169	2.6119	0.58	2.6748	2.6684	
0.84	2.6247	2.6197				7 N 2 9
0.8	2.6324	2.6275				0 1
0.74	2.6395	2.6345				

pН	<i>8</i> ⁴ Н9	δ^{1} H10	pН	<i>8</i> ⁴ Н9	δ^{1} H10	
8.07	2.6480	2.6225	0.45	2.7306	2.7037	
1.66	2.6515	2.6261	0.41	2.7419	2.7150	,
1	2.6649	2.6395	0.4	2.7525	2.7249	\sim \sim 6 \sim N_{1} 3 <10
0.85	2.6797	2.6543	0.33	2.7595	2.7320	
0.72	2.6939	2.6677	0.34	2.7673	2.7391	7 N 2 9 8 1
0.58	2.7059	2.6797	0.35	2.7779	2.7489	U I
0.51	2.7200	2.6932				

(2,3-dimethyl-6-quinoxalinyl)phenyl-methanone (10).

2,2',3,3'-Tetramethyl-6,6'-biquinoxaline (11).

pН	∂ ¹ H9	δ^{4} H10	pН	∂ ¹H9	δ^{4} H10	
7.11	2.6522	2.6564	0.09	2.8111	2.8196	5 4
4.07	2.6833	2.6889	0.11	2.8196	2.8280	Qnx 6 N 3 10
2.21	2.7256	2.7334				7 N 2 9
0.26	2.7602	2.768				8 1
0.17	2.7779	2.7857				N N
0.09	2.7927	2.8005				Qnx =
0.00	2.8019	2.8097				~ N `

IV. Computational chemistry

The structures 1-14 were optimized with DFT ω B97XD 6-311++G (d,p) level of theory, the HOMO orbitals were get from optimized structures with HF 6-311++G (d,p) basis set. The bond lengths and angles are accord to X-ray data reported in literature. Tables 1S and 2S showed the values obtained for compounds 1-14.

Comp	C2C3	C2C9	C3C10	C6C7	C6R ^a	C7C8	C8C8a	C9C10	N1C2	N1C8a
1	1.442	1.501	1.501	1.413	1.084	1.369	1.413	2.964	1.305	1.362
1 ^b	1.443	1.492	1.492	1.404		1.348	1.405	2.974	1.310	1.368
2	1.446	1.499	1.500	1.408	1.477	1.367	1.413	2.963	1.304	1.362
2 ^c	1.447	1.496	1.494	1.401	1.466	1.372	1.409	2.942	1.311	1.371
3	1.445	1.500	1.500	1.419	1.434	1.367	1.413	2.964	1.304	1.362
4	1.443	1.500	1.500	1.416	1.503	1.366	1.414	2.963	1.305	1.361
5	1.441	1.501	1.501	1.406	1.344	1.368	1.413	2.964	1.305	1.361
6	1.442	1.500	1.500	1.411	1.746	1.368	1.413	2.963	1.305	1.361
7	1.443	1.500	1.500	1.412	1.899	1.368	1.412	2.963	1.305	1.361
8	1.445	1.500	1.500	1.417	1.488	1.368	1.413	2.963	1.304	1.362
9	1.444	1.500	1.500	1.417	1.491	1.368	1.413	2.963	1.305	1.362
10	1.443	1.500	1.500	1.419	1.498	1.366	1.414	2.964	1.305	1.361
11	1.440	1.503	1.505	1.421	1.483	1.367	1.413	3.025	1.307	1.358
11 ^d	1.442	1.500	1.497	1.418	1.489	1.373	1.409	2.950	1.315	1.378
12	1.443	1.501	1.501	1.416	1.355	1.371	1.408	2.962	1.304	1.361
13	1.441	1.501	1.501	1.416	1.358	1.368	1.412	2.963	1.305	1.360
14	1.437	1.502	1.501	1.424	1.374	1.364	1.414	2.963	1.307	1.356

Table 1S. Bond length (Å) of 2,3-dimethyl-6R-quinoxalines optimized with DFT ω B97XD/6-311++(d,p) level theory.

^a Distance of carbon atom with substituent R. ^bX-ray of compound **1** is report in Reference 3, ^c compound 2 in reference 4 and ^d compound 11 in reference 5.

Table 2S. Angles (°, \angle_{NCC}) of 2,3-dimethyl-6R-quinoxalines optimized with DFT ω B97XD/6-311++(d,p) level theory.

	∠ _{N129}	∠N123	∠N18a8	∠N18a4a	∠N432	∠2N18a	∠2310	∠329	∠8a87	∠678	∠567
1	118.0	121.4	119.6	120.7	121.4	117.7	120.4	120.4	119.8	120.5	120.5
1 ^b	117.7	121.5	119.8	120.8		117.7		120.9	119.9	120.8	
2	118.0	121.6	119.4	120.7	121.4	117.6	120.4	120.3	120.2	118.8	122.9
2°	118.2	121.8	119.1	121.0	121.7	117.1	120.1	119.9	120.1	118.7	123.6
3	118.0	121.5	119.5	120.7	121.4	117.6	120.4	120.3	120.1	120.0	120.8
4	118.0	121.5	119.6	120.7	121.4	117.6	120.4	120.3	120.0	120.1	121.0
5	118.1	121.3	119.5	120.8	121.6	117.7	120.4	120.5	120.1	119.0	123.0
6	118.0	121.4	119.7	120.8	121.5	117.6	120.3	120.4	120.2	119.6	121.8
7	118.1	121.4	119.7	120.8	121.5	117.6	120.4	120.4	120.3	119.6	121.7
8	118.0	121.6	119.6	120.7	121.4	117.6	120.4	120.3	120.0	120.3	120.5
9	118.0	121.6	119.6	120.7	121.4	117.6	120.4	120.3	120.0	120.3	120.4
10	118.0	121.5	119.7	120.7	121.4	117.6	120.4	120.4	119.9	120.7	119.9
11	117.2	121.2	119.9	120.8	121.3	117.9	122.0	121.4	119.9	121.3	119.1
11 ^d	118.6	121.7	119.9	120.8	121.8	117.1	120.7	119.6	120.0	121.1	119.0
12	118.1	121.3	119.8	121.1	121.8	117.6	120.2	120.5	120.6	120.1	120.2
13	118.1	121.2	119.7	121.1	121.7	117.6	120.3	120.6	120.1	120.4	120.6
14	118.1	121.1	120.0	121.2	121.8	117.7	120.3	120.7	120.4	121.0	119.1

See footnote in table S1 for ^b, ^c and d

To calculate the heat formation of compounds was used the Spartan Pro 08 software⁶ and Gaussian 09 package.⁷ The initial and ending regioisomers $\mathbf{a:b}$, mesomeric forms ($\mathbf{a1-a4, b1-b4}$) and intermediaries ($\mathbf{a5-a6, b5-b6}$) of complexes (2,3-dimethyl-6R-quinoxalines)- SeO₂ were built in Spartan pro 08 as shown in scheme 3, previously were optimized with molecular mechanics (MMFF94), the structures were exported to Gaussian 09 as MDL files, subsequently were calculated the heat formation energies with semiempirical PM6 method. The energy data obtained and the energetic diagrams were processed and built in a Microsoft excel worksheet respectively. Details of calculations for structures are shown as follows:

2,3-Dimethylquinoxaline (1).

Calculation Type	OPT + FREQ	
Calculation Method	R@B97XD	
Basis Set	6-311++G(d,p)	
Charge	0	
Spin	Singlet	
E(R\u00ffB97XD)	-496.55382297 a.u	
RMS Gradient Norm	0.00000451 a.u	
Imaginary Freq	0	
Dipole Moment	0.8639 Debye	
Point Group	C1	
	Standard orientation:	

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Ζ		
1	6	0	-3.092271	0.706911	0.000009		
2	6	0	-1.912657	1.403510	-0.000025		
3	6	0	-0.683403	0.705931	-0.000016		
4	6	0	-0.683402	-0.705931	-0.000007		
5	6	0	-1.912656	-1.403510	0.000015		
6	6	0	-3.092271	-0.706911	0.000036		
7	1	0	-4.036534	1.239577	0.000019		
8	1	0	-1.884877	2.486969	-0.000043		
9	1	0	-1.884875	-2.486969	0.000030		
10	6	0	1.600115	-0.721237	-0.000049		
11	6	0	1.600113	0.721237	-0.000028		
12	6	0	2.894180	-1.482040	-0.000009		
13	1	0	3.496066	-1.235494	-0.880003		
14	1	0	3.495127	-1.236783	0.881024		
15	1	0	2.684711	-2.550634	-0.000802		
16	6	0	2.894179	1.482041	0.000050		
17	1	0	3.495642	1.235879	0.880457		
18	1	0	3.495547	1.236399	-0.880569		
19	1	0	2.684714	2.550636	0.000333		
20	7	0	0.487103	-1.403194	-0.000037		
21	7	0	0.487102	1.403193	-0.000016		
22	1	0	-4.036533	-1.239578	0.000069		

Calculation Type	SP
Calculation Method	RPM6
Basis Set	ZDO

2,3-Dimethyl-6-nitroquinoxaline (2).

.

Calculation Type	OPT + FREQ	
Calculation Method	R _w B97XD	
Basis Set	6-311++G(d,p)	🔴 🤉 🕓
Charge	0	
Spin	Singlet	
E(R\u03c6B97XD)	-701.04864973 a.u	
RMS Gradient Norm	0.00013478 a.u	
Imaginary Freq	0	ن ن
Dipole Moment	6.2709 Debye	
Point Group	CS	

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.844497	-1.038294	0.000000	
2	1	0	-2.076010	1.090417	0.000000	
3	6	0	-1.392099	0.252295	0.000000	
4	6	0	0.368416	-1.942075	0.000000	
5	6	0	0.000000	0.473768	0.000000	
6	6	0	-0.983285	-2.152372	0.000000	
7	6	0	0.883894	-0.626031	0.000000	
8	7	0	0.469309	1.753348	0.000000	
9	1	0	-1.405770	-3.147550	0.000000	
10	1	0	1.070588	-2.766851	0.000000	
11	6	0	1.762090	1.921472	0.000000	
12	6	0	2.669300	0.795033	0.000000	
13	7	0	2.232830	-0.434436	0.000000	
14	7	0	-3.302464	-1.275749	0.000000	
15	8	0	-4.033923	-0.306735	0.000000	
16	8	0	-3.681140	-2.430451	0.000000	
17	6	0	4.152595	1.016682	0.000000	
18	1	0	4.463331	1.586711	0.880514	
19	1	0	4.463331	1.586711	-0.880514	
20	1	0	4.661219	0.054159	0.000000	
21	6	0	2.292806	3.324489	0.000000	
22	1	0	2.915372	3.508079	0.880569	
23	1	0	2.915372	3.508079	-0.880569	
24	1	0	1.460031	4.025784	0.000000	

Calculation Type	OPT + FREQ	
Calculation Method	R _w B97XD	
Basis Set	6-311++G(d,p)	•
Charge	0	•
Spin	Singlet	
E(R\u00fcB97XD)	-588.78280682 a.u	, ú
RMS Gradient Norm	0.00006290 a.u	
Imaginary Freq	0	
Dipole Moment	6.0776 Debye	
Point Group	ĊS	

6-carbonitrile-2,3-dimethylquinoxaline (3).

Standard orientation:						
Center	Atomic Atomic Coordinates (Angstroms)					
Number	Number	Туре	Х	Ŷ	Ż	
1	6	0	-2.386994	0.798571	0.000000	
2	1	0	-0.964926	2.414465	0.000000	
3	6	0	-1.122938	1.342965	0.000000	
4	6	0	-1.491448	-1.443203	0.000000	
5	6	0	0.000000	0.490299	0.000000	
6	6	0	-2.574013	-0.608422	0.000000	
7	6	0	-0.183051	-0.908009	0.000000	
8	7	0	1.249183	1.034944	0.000000	
9	1	0	-3.580831	-1.007685	0.000000	
10	1	0	-1.605648	-2.520453	0.000000	
11	6	0	2.264747	0.216581	0.000000	
12	6	0	2.078051	-1.216955	0.000000	
13	7	0	0.887229	-1.750686	0.000000	
14	6	0	3.263691	-2.135857	0.000000	
15	1	0	3.890421	-1.966324	0.880465	
16	1	0	3.890421	-1.966324	-0.880465	
17	1	0	2.920089	-3.168976	0.000000	
18	6	0	3.645279	0.803728	0.000000	
19	1	0	4.208889	0.481711	0.880615	
20	1	0	4.208889	0.481711	-0.880615	
21	1	0	3.574399	1.890151	0.000000	
22	6	0	-3.535444	1.658504	0.000000	
23	7	0	-4.463409	2.340386	0.000000	

Calculation Type	OPT + FREQ	
Calculation Method	R ₀ B97XD	
Basis Set	6-311++G(d,p)	د د 🍋
Charge	0	
Spin	Singlet	
E(R\u00f6B97XD)	-833.61280178 a.u	
RMS Gradient Norm	0.00001019 a.u	
Imaginary Freq	0	ف ف
Dipole Moment	4.2572 Debye	
Point Group	C1	

2,3-Dimethyl-6-(trifluoromethyl)quinoxaline (4).

Standard orientation:							
Center	Center Atomic Atomic Coordinates (Angstroms)						
Number	Number	Туре	Х	Y	Z		
1	6	0	1.775458	0.128790	-0.009440		
2	1	0	0.990238	-1.871244	-0.016130		
3	6	0	0.779780	-0.809416	-0.011891		
4	6	0	0.175668	1.933366	-0.001247		
5	6	0	-0.569813	-0.390017	-0.008599		
6	6	0	1.475923	1.512814	-0.003854		
7	6	0	-0.874280	0.985719	-0.003136		
8	7	0	-1.557697	-1.326862	-0.008876		
9	1	0	2.284248	2.234419	-0.003251		
10	1	0	-0.082044	2.985543	0.002197		
11	6	0	-2.792322	-0.903814	-0.002712		
12	6	0	-3.105194	0.505849	0.001447		
13	7	0	-2.167107	1.413593	0.001061		
14	6	0	-4.533149	0.966050	0.004036		
15	1	0	-5.075537	0.560146	0.862840		
16	1	0	-5.054325	0.627940	-0.896712		
17	1	0	-4.562823	2.053727	0.043838		
18	6	0	-3.889303	-1.927159	0.007014		
19	1	0	-4.484561	-1.851608	0.922234		
20	1	0	-4.572396	-1.784989	-0.835288		
21	1	0	-3.453002	-2.923051	-0.049874		
22	6	0	3.221492	-0.282144	0.001452		
23	9	0	3.384383	-1.609035	-0.079283		
24	9	0	3.839924	0.126163	1.126249		
25	9	0	3.897721	0.265290	-1.026252		

Calculation Type		SP			
Calculation Methe	od	RPM6			
Basis Set		ZDO			
ه وه رفيه و في فر ريه و في فر	وي رقبو في قر روفو فروفر	وي و م رقب و مقر ري في في فر	و موجود رفو موجود رو موجود	مې د کومو کو کړ دې کومو کې	ه.و رفي هي قر قر بر في في فر
a1	a2	a3	a4	a5	a6

2,3-Dimethyl-6-fluoroquinoxaline (5).

Calculation Type	OPT + FREQ	
Calculation Method	R _w B97XD	
Basis Set	6-311++G(d,p)	a a
Charge	0	
Spin	Singlet	
E(R\u00fcB97XD)	-595.79541900 a.u	
RMS Gradient Norm	0.00011526 a.u	
Imaginary Freq	1	<u>ن</u> ن
Dipole Moment	2.6078 Debye	
Point Group	ĊS	

Standard orientation:						
Center	Atomic	Atomic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z	
1	6	0	-2.112441	1.770006	0.000000	
2	1	0	-0.248621	2.822556	0.000000	
3	6	0	-0.752343	1.864784	0.000000	
4	6	0	-2.073416	-0.620806	0.000000	
5	6	0	0.000000	0.669156	0.000000	
6	6	0	-2.796438	0.541502	0.000000	
7	6	0	-0.660303	-0.579239	0.000000	
8	7	0	1.360258	0.736454	0.000000	
9	1	0	-3.879336	0.541509	0.000000	
10	1	0	-2.558557	-1.589326	0.000000	
11	6	0	2.022605	-0.389201	0.000000	
12	6	0	1.348438	-1.663635	0.000000	
13	7	0	0.045368	-1.743010	0.000000	
14	6	0	2.135008	-2.942370	0.000000	
15	1	0	2.781031	-3.007644	0.880596	
16	1	0	2.781031	-3.007644	-0.880596	
17	1	0	1.447315	-3.786673	0.000000	
18	6	0	3.522193	-0.322673	0.000000	
19	1	0	3.937729	-0.821893	0.880410	
20	1	0	3.937729	-0.821893	-0.880410	
21	1	0	3.836816	0.719711	0.000000	
22	9	0	-2.852704	2.892449	0.000000	

Calculation Type	SP		
Calculation Method	RPM6		
Basis Set	ZDO		

Calculation Type	OPT + FREQ	
Calculation Method	R _w B97XD	
Basis Set	6-311++G(d,p)	ې پ
Charge	0	
Spin	Singlet	
$E(R\omega B97XD)$	-956.16091472 a.u	
RMS Gradient Norm	0.00000882 a.u	
Imaginary Freq	1	ف ف
Dipole Moment	2.8323 Debye	
Point Group	C1	
	Standard orientation:	

2,3-Dimethyl-6-chloroquinoxaline (6).

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.145938	1.360835	0.000286
2	6	0	-0.861256	1.832045	0.000279
3	6	0	0.227550	0.931147	-0.000071
4	6	0	-0.022010	-0.457196	-0.000470
5	6	0	-1.351961	-0.935329	-0.000493
6	6	0	-2.378072	-0.031939	-0.000045
7	1	0	-2.988501	2.040905	0.000586
8	1	0	-0.650101	2.894709	0.000559
9	1	0	-1.525416	-2.003802	-0.000727
10	6	0	2.221124	-0.875535	-0.000406
11	6	0	2.476507	0.544518	-0.000019
12	6	0	3.360690	-1.851946	0.000849
13	1	0	4.002741	-1.708517	-0.873274
14	1	0	3.988247	-1.721133	0.887524
15	1	0	2.965860	-2.866610	-0.009216
16	6	0	3.884438	1.064466	-0.000256
17	1	0	4.435249	0.710239	0.876149
18	1	0	4.429853	0.722580	-0.884992
19	1	0	3.866287	2.153197	0.007114
20	7	0	1.005354	-1.351242	-0.000725
21	7	0	1.500974	1.412008	0.000132
22	17	0	-4.031468	-0.596078	0.000148

Calculation Type	SP	
Calculation Method	RPM6	
Basis Set	ZDO	

2,3-Dimethyl-6-bromoquinoxaline (7).

Calculation Type	OPT + FREQ	
Calculation Method	R@B97XD	
Basis Set	6-311++G(d,p)	
Charge	0	
Spin	Singlet	y y y v
E(R\u00fcB97XD)	-3070.1257740 a.u	
RMS Gradient Norm	0.00001167 a.u	
Imaginary Freq	0	ن ن
Dipole Moment	2.7976 Debye	
Point Group	Č1	

		Standard	d orientation:		
Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.406947	1.546643	0.001124
2	6	0	-0.097809	1.946834	0.001111
3	6	0	0.940504	0.988627	-0.000769
4	6	0	0.616277	-0.383700	-0.003017
5	6	0	-0.738096	-0.788870	-0.003110
6	6	0	-1.715330	0.167912	-0.000627
7	1	0	-2.207490	2.275491	0.002737
8	1	0	0.170495	2.996590	0.002616
9	1	0	-0.963099	-1.847779	-0.004368
10	6	0	2.833080	-0.924185	-0.002361
11	6	0	3.165220	0.480215	0.000032
12	6	0	3.916701	-1.962069	0.004554
13	1	0	4.600385	-1.828020	-0.838671
14	1	0	4.514648	-1.895279	0.918798
15	1	0	3.467448	-2.952213	-0.052524
16	6	0	4.599497	0.922029	-0.000440
17	1	0	5.139062	0.510227	0.857439
18	1	0	5.115247	0.578257	-0.902233
19	1	0	4.642726	2.009353	0.039325
20	7	0	1.593113	-1.332501	-0.004516
21	7	0	2.238399	1.399482	0.000611
22	35	0	-3.542245	-0.350746	0.000721

Calculation Type	SP	
Calculation Method	RPM6	
Basis Set	ZDO	

2.	3.	Dimet	thyl	quino	xaline-	6-carl	boxylic	acid	(8).
			•	1			•		< /

Calculation Type	OPT + FREQ	
Calculation Method	R _w B97XD	
Basis Set	6-311++G(d,p)	i i i i i i i i i i i i i i i i i i i
Charge	0	a 🕲 🧔 🗶 🥸
Spin	Singlet	
$E(R\omega B97XD)$	-685.13023589 a.u	
RMS Gradient Norm	0.00001072 a.u	
Imaginary Freq	0	5
Dipole Moment	2.6167 Debye	
Point Group	Č1	

Center	Atomic	Atomic	Coordi	nates (Angstr	oms)
Number	Number	Туре	X	Y	Z
1	6	0	1.833720	-1.439735	-0.000157
2	6	0	0.540847	-1.886955	-0.000311
3	6	0	-0.528104	-0.962515	-0.001626
4	6	0	-0.253162	0.421408	-0.003754
5	6	0	1.084492	0.865664	-0.003730
6	6	0	2.109625	-0.049532	-0.001304
7	1	0	2.656830	-2.142456	0.001231
8	1	0	0.304065	-2.944191	0.000885
9	1	0	1.289940	1.929356	-0.004635
10	6	0	-2.487244	0.886827	-0.002170
11	6	0	-2.769047	-0.530458	0.000452
12	6	0	-3.607670	1.885091	0.004656
13	1	0	-4.283237	1.729581	-0.841387
14	1	0	-4.205404	1.794560	0.916912
15	1	0	-3.193052	2.890472	-0.048332
16	6	0	-4.186839	-1.021339	0.001215
17	1	0	-4.738416	-0.628702	0.860403
18	1	0	-4.714795	-0.692790	-0.899145
19	1	0	-4.192555	-2.109497	0.039141
20	7	0	-1.263366	1.336856	-0.004863
21	7	0	-1.812497	-1.418024	0.000381
22	6	0	3.504175	0.469892	0.000916
23	8	0	3.806399	1.634862	0.000677
24	8	0	4.427597	-0.510682	0.003781
25	1	0	5.290935	-0.081684	0.005508

Standard orientation:

Calculation Type	OPT + FREQ	
Calculation Method	R@B97XD	
Basis Set	6-311++G(d,p)	, 🌳 🥥 🗳
Charge	0	
Spin	Singlet	
E(R\u00ffB97XD)	-724.42622001 a.u	
RMS Gradient Norm	0.00000603 a.u	
Imaginary Freq	0	
Dipole Moment	2.0624 Debye	
Point Group	C1	

	Î	Standar	d orientation:		
Center	Atomic	Atomic	Coordi	nates (Angstr	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.419535	-1.431229	-0.002563
2	6	0	0.128201	-1.882867	-0.002128
3	6	0	-0.944036	-0.962042	-0.002742
4	6	0	-0.672531	0.422601	-0.005345
5	6	0	0.664373	0.870582	-0.005991
6	6	0	1.692542	-0.040426	-0.003736
7	1	0	2.245994	-2.129891	-0.001419
8	1	0	-0.105142	-2.940945	-0.000676
9	1	0	0.866636	1.934861	-0.006890
10	6	0	-2.908205	0.881351	-0.001899
11	6	0	-3.186181	-0.536022	0.001605
12	6	0	-4.031243	1.876934	0.005566
13	1	0	-4.707593	1.719209	-0.839480
14	1	0	-4.627658	1.785879	0.918663
15	1	0	-3.619046	2.883266	-0.048810
16	6	0	-4.602772	-1.030950	0.004349
17	1	0	-5.154783	-0.639252	0.863710
18	1	0	-5.132795	-0.705059	-0.895810
19	1	0	-4.605199	-2.119114	0.043359
20	7	0	-1.685364	1.334907	-0.005858
21	7	0	-2.227034	-1.421056	0.000697
22	6	0	3.088210	0.486290	-0.000800
23	8	0	3.376791	1.655657	0.000055
24	8	0	4.001390	-0.494845	0.001690
25	6	0	5.365890	-0.074591	0.007445
26	1	0	5.579573	0.516290	0.899571
27	1	0	5.953373	-0.990175	0.005677
28	1	0	5.585286	0.523680	-0.878303

~ ~	
53	4

Methyl 2,3-dimethylquinoxaline-6-carboxylate (9).

Calculation Type	OPT + FREQ	
Calculation Method	R@B97XD	
Basis Set	6-311++G(d,p)	
Charge	0	
Spin	Singlet	
E(R\u00fcB97XD)	-840.90586078 a.u	
RMS Gradient Norm	0.00001100 a.u	
Imaginary Freq	0	
Dipole Moment	4.1587 Debye	
Point Group	Č1	ن ق

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.073697	2.339445	0.322935	
2	6	0	1.431920	2.283770	0.460037	
3	6	0	2.117904	1.071477	0.213003	
4	6	0	1.389283	-0.072913	-0.171254	
5	6	0	-0.016253	0.000332	-0.288817	
6	6	0	-0.667508	1.185517	-0.041589	
7	1	0	-0.465369	3.264989	0.485330	
8	1	0	2.013368	3.151403	0.748745	
9	1	0	-0.546161	-0.893302	-0.596747	
10	6	0	3.319272	-1.284066	-0.299428	
11	6	0	4.065271	-0.113335	0.095296	
12	6	0	4.025054	-2.579722	-0.573682	
13	1	0	4.767423	-2.465162	-1.369110	
14	1	0	4.556500	-2.933045	0.315209	
15	1	0	3.295864	-3.330817	-0.873067	
16	6	0	5.558280	-0.174094	0.231659	
17	1	0	5.856444	-0.923008	0.971346	
18	1	0	6.027664	-0.452683	-0.716631	
19	1	0	5.932897	0.800450	0.540759	
20	7	0	2.020631	-1.252636	-0.426450	
21	7	0	3.472573	1.023636	0.342012	
22	6	0	-2.146319	1.337852	-0.232786	
23	8	0	-2.604366	2.412213	-0.561189	
24	6	0	-3.051011	0.162271	-0.026593	
25	6	0	-2.789922	-0.829484	0.920185	
26	6	0	-4.231653	0.109004	-0.769719	
27	6	0	-3.697793	-1.863150	1.116026	
28	1	0	-1.887057	-0.783984	1.518216	
29	6	0	-5.126090	-0.934264	-0.587682	
30	1	0	-4.433326	0.896457	-1.486376	
31	6	0	-4.860703	-1.920980	0.357514	
32	1	0	-3.496119	-2.622840	1.862472	
33	1	0	-6.035439	-0.976883	-1.176259	
34	1	0	-5.564763	-2.732243	0.506056	

Calculation Type	SP	
Calculation Method	RPM6	
Basis Set	ZDO	

(2,3-dimethyl-6-quinoxalinyl)phenyl-methanone (10).

a6

a5

Calculation Type	OPT + FREQ	
Calculation Method	R@B97XD	a a
Basis Set	6-311++G(d,p)	ചല് പ്പ
Charge	0	
Spin	Singlet	
E(RwB97XD)	-991.91299620 a.u	
RMS Gradient Norm	0.00003795 a.u	
Imaginary Freq	2	
Dipole Moment	0.9521 Debye	
Point Group	C1	

2,2',3,3'-Tetramethyl-6,6'-biquinoxaline (11).

Standard orientation:					
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.401378	-1.986717	-0.590949
2	6	0	-2.760150	-2.014894	-0.739513
3	6	0	-3.534940	-0.892300	-0.367547
4	6	0	-1.483312	0.255039	0.294437
5	6	0	-0.738444	-0.841489	-0.070687
6	1	0	-0.810154	-2.843260	-0.896222
7	1	0	-3.271061	-2.879341	-1.147027
8	1	0	-1.019229	1.138434	0.718149
9	6	0	-4.905725	1.299363	0.384364
10	6	0	-5.564589	0.136345	-0.153739
11	6	0	0.738415	-0.841589	0.069246
12	6	0	1.483549	0.254570	-0.296446
13	6	0	1.401025	-1.986542	0.590520
14	6	0	2.888863	0.248219	-0.153787
15	1	0	1.019717	1.137732	-0.720919
16	6	0	2.759723	-2.014729	0.739723
17	1	0	0.809587	-2.842801	0.896174
18	6	0	3.534755	-0.892402	0.367473
19	1	0	3.270371	-2.878915	1.148121
20	6	0	4.906062	1.298726	-0.385071
21	6	0	5.564519	0.136230	0.154693
22	6	0	-5.669162	2.524955	0.810286
23	1	0	-5.484563	2.719861	1.869257
24	1	0	-5.308559	3.392440	0.252892
25	1	0	-6.743150	2.434289	0.655989
26	6	0	-7.057628	0.087483	-0.321719
27	1	0	-7.569359	0.217158	0.636291
28	1	0	-7.407900	0.877574	-0.992231
29	1	0	-7.333890	-0.878489	-0.741638
30	6	0	5.669656	2.524618	-0.809877
31	1	0	5.472758	2.729501	-1.864661
32	1	0	5.320096	3.388890	-0.240413
33	1	0	6.745014	2.428001	-0.669413
34	6	0	7.057327	0.087883	0.324872
35	1	0	7.570331	0.214303	-0.632898
36	1	0	7.406762	0.880202	0.993177

37	1	0	7.332982	-0.876729	0.748300
38	7	0	3.607700	1.339488	-0.529155
39	7	0	4.885383	-0.921835	0.515050
40	7	0	-3.607249	1.340306	0.527347
41	7	0	-4.885689	-0.921903	-0.514011
42	6	0	-2.888692	0.248691	0.152464

<u> </u>	3 5	
Calculation Type	SP	
Calculation Method	RPM6	
Basis Set	ZDO	

b4

c1

c2_b

b5

S40

Calculation Type	OPT + FREQ	
Calculation Method	R@B97XD	
Basis Set	6-311++G(d,p)	
Charge	0	
Spin	Singlet	
E(R\u00fcB97XD)	-611.07313689 a.u	
RMS Gradient Norm	0.00001243 a.u	
Imaginary Freq	0	
Dipole Moment	1.1334 Debye	
Point Group	C1	

2,3-Dimethyl-6-methoxyquinoxaline (12).

Standard orientation:					
Center	Atomic Atomic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z
1	6	0	-2.341429	-0.275585	-0.000443
2	1	0	-1.357860	-2.176158	-0.002059
3	6	0	-1.238496	-1.100089	-0.001480
4	6	0	-0.923453	1.681653	0.000468
5	6	0	0.052471	-0.545019	-0.001258
6	6	0	-2.180061	1.131884	0.000354
7	6	0	0.219778	0.858542	-0.000226
8	7	0	1.139916	-1.370783	-0.001772
9	1	0	-3.042493	1.785360	0.001052
10	1	0	-0.781770	2.756107	0.001156
11	6	0	2.321001	-0.816664	-0.000914
12	6	0	2.488641	0.616972	0.000018
13	7	0	1.460334	1.419925	0.000373
14	6	0	3.861852	1.224702	-0.000587
15	1	0	4.424315	0.929327	-0.891694
16	1	0	4.440055	0.898801	0.869338
17	1	0	3.773307	2.310014	0.018309
18	6	0	3.521526	-1.718652	0.002359
19	1	0	4.162878	-1.524973	-0.862554
20	1	0	4.129533	-1.557453	0.897832
21	1	0	3.192999	-2.756593	-0.021835
22	8	0	-3.551938	-0.886217	-0.000307
23	6	0	-4.718441	-0.091705	0.001301
24	1	0	-4.777923	0.538398	-0.893173
25	1	0	-5.553265	-0.790319	0.001452
26	1	0	-4.776357	0.536991	0.896880

6-Hydroxy-2,3-dimethylquinoxaline (13).

Calculation Type	OPT + FREQ	
Calculation Method	R _w B97XD	
Basis Set	6-311++G(d,p)	
Charge	0	
Spin	Singlet	
E(R\u00fcB97XD)	-571.77845033 a.u	
RMS Gradient Norm	0.00001115 a.u	
Imaginary Freq	0	
Dipole Moment	1.4121 Debye	
Point Group	C1	
Standard orientation:		

Center	Atomic	Atomic	Coordi	nates (Angstr	oms)
Number	Number	Туре	Х	Ŷ	Ż
1	6	0	-2.757641	-0.296872	-0.000099
2	1	0	-1.769637	-2.195564	-0.000044
3	6	0	-1.658913	-1.118709	-0.000037
4	6	0	-1.358002	1.673482	0.000002
5	6	0	-0.368614	-0.551956	0.000011
6	6	0	-2.605249	1.111153	-0.000006
7	6	0	-0.209339	0.851935	-0.000016
8	7	0	0.722211	-1.370045	0.000016
9	1	0	-3.487933	1.744601	0.000071
10	1	0	-1.221407	2.748404	0.000040
11	6	0	1.901514	-0.809331	0.000054
12	6	0	2.060787	0.623347	0.000060
13	7	0	1.026387	1.420152	0.000033
14	6	0	3.429731	1.240275	-0.000037
15	1	0	4.001823	0.933757	-0.881069
16	1	0	4.002409	0.932840	0.880285
17	1	0	3.334081	2.325138	0.000540
18	6	0	3.106176	-1.705473	-0.000020
19	1	0	3.730371	-1.524324	-0.880218
20	1	0	3.729777	-1.525152	0.880773
21	1	0	2.782702	-2.745255	-0.000591
22	8	0	-3.989820	-0.870079	0.000070
23	1	0	-4.666508	-0.191673	-0.000158

Calculation Type	OPT + FREQ	
Calculation Method	R _w B97XD	
Basis Set	6-311++G(d,p)	
Charge	0	
Spin	Singlet	
$E(R\omega B97XD)$	-551.91373315 a.u	
RMS Gradient Norm	0.00003059 a.u	
Imaginary Freq	1	
Dipole Moment	1.5761 Debye	
Point Group	CS	
	Standard orientation:	

6-Amino-2,3-dimethylquinoxaline (14).

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Ż	
1	6	0	-2.143062	1.774001	0.000000	
2	1	0	-0.238830	2.783798	0.000000	
3	6	0	-0.764103	1.835065	0.000000	
4	6	0	-2.053268	-0.653530	0.000000	
5	6	0	0.000000	0.651882	0.000000	
6	6	0	-2.781883	0.500316	0.000000	
7	6	0	-0.639099	-0.608545	0.000000	
8	7	0	1.360518	0.731756	0.000000	
9	1	0	-3.866626	0.456270	0.000000	
10	1	0	-2.535487	-1.624158	0.000000	
11	6	0	2.035284	-0.388530	0.000000	
12	6	0	1.381030	-1.668523	0.000000	
13	7	0	0.076371	-1.761503	0.000000	
14	7	0	-2.917678	2.909317	0.000000	
15	6	0	2.182004	-2.939328	0.000000	
16	1	0	2.828834	-3.001074	0.880685	
17	1	0	2.828834	-3.001074	-0.880685	
18	1	0	1.502554	-3.790693	0.000000	
19	6	0	3.534765	-0.303052	0.000000	
20	1	0	3.957441	-0.796900	0.880327	
21	1	0	3.957441	-0.796900	-0.880327	
22	1	0	3.836257	0.743429	0.000000	
23	1	0	-2.496698	3.819263	0.000000	
24	1	0	-3.918210	2.852509	0.000000	

2	ş		3	
Basis Set		ZDO		
Calculation Method		RPM6		
Calculation Type		SP		
Calculation Type		SP		

References

- 1. K. Marat, SPINWORKS, Version 4.0.3.0, University of Manitoba, Winnipeg MB R3T 2N2, 2011.
- 2. A. R. Quirt and J. S. Martin, J. Magn. Reson., 1971, 5, 318-327.
- 3. K. Wozniak, T. M. Krygowski, B. Kariuki and W. Jones, *Acta Crystallogr., Sect. C*, 1990, **46**, 1946-1947.
- 4. R. M. Ghalib, R. Hashim, S. H. Mehdi, J. H. Goh and H.-K. Fun, *Acta Crystallogr., Sect. E*, 2010, **66**, 01830-01831.
- 5. R. N. Salvatore, J. P. Kass, R. J. P. Gibson, C. H. Zambrano, R. D. Pike and E. E. Dueno, *Acta Crystallogr., Sect. E*, 2006, **62**, o4547-o4548.
- 6. SPARTAN '08, *Wavefunction, Inc.*, 18401 Von Karman Ave., Suite 370 Irvine, CA 92612, 2009.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox. GAUSSIAN 09 (Revision D.01), *Gaussian, Inc.*, Wallingford, CT, 2009.