Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

## **Supporting Information**

## Optical Properties of two fluorene derived BODIPY molecular rotors as fluorescent ratiometric viscosity probes

Elba Xochitiotzi-Flores,<sup>a,‡</sup> Arturo Jiménez-Sánchez,<sup>b,‡</sup> Héctor García-Ortega,<sup>a</sup> Nuria-Sanchez Puig,<sup>c</sup> Margarita Romero-Ávila,<sup>a</sup> Rosa Santillan,<sup>d</sup> Norberto Farfán<sup>a\*</sup>

<sup>a</sup> Facultad de Química, Departamento de Química Orgánica, <sup>b</sup> Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, 04510, México, D. F., México.

<sup>c</sup> Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México, D. F., México.

<sup>d</sup> Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México, D. F., México.

*‡* These authors contributed equally.

All NMR spectra were acquired in chloroform.

Figure S1. <sup>1</sup>H NMR spectrum of compound 1, at 500 MHz.





Figure S2. <sup>13</sup>C NMR spectrum of compound 1, at 125 MHz.

Figure S3. HSQC NMR spectrum of compound 1, at 500 MHz.



Figure S4. <sup>11</sup>B, <sup>19</sup>F NMR spectra of compound 1, at 160 and 470 MHz respectively.





Figure S5. <sup>1</sup>H NMR spectrum of compound **2**, at 500 MHz.

Figure S6. <sup>13</sup>C NMR spectrum of compound 2, at 125 MHz.







Figure S8. <sup>11</sup>B, <sup>19</sup>F NMR spectra of compound 2, at 160 and 470 MHz respectively.



**Figure S9.** From top to bottom: fluorescence emission spectra for compounds 1 and 2 exciting at the respective long wavelength value (A); excitation spectra for 1 (B) and 2 (C) at the short and long wavelength emission band.





**Figure S10.** Computed UV-Vis spectra for **1** and **2** at TD-DFT: PBE0/6-31+G(d,p)/PCM-Methanol.



**Table S1.** Estimated coefficients  $y_0$ ,  $a_{SA}$ ,  $b_{SB}$ ,  $c_{SP}$  and  $d_{SdP}$  for  $\bar{\nu}_{abs}$ ,  $\bar{\nu}_{em}$ , and  $\Delta \bar{\nu}$  (cm<sup>-1</sup>) and multiple correlation coefficient (*r*) for regression analysis of compound **2** in 16 solvents according to the Catalán solvent parameters {SA, SB, SP, SdP}.

| $y_0 ({\rm cm}^{-1})$ | <i>a</i> <sub>SA</sub>                                         | b <sub>SB</sub>                                                                                                              | c <sub>sp</sub>                                                                                                                                                                  | <i>d</i> <sub>SdP</sub>                                                                                                                                                        | r                                                                                                                                                                                                                                                                                             |
|-----------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $32278\pm314$         | $-193 \pm 149$                                                 | $-82 \pm 143$                                                                                                                | $-612 \pm 447$                                                                                                                                                                   | $-48 \pm 113$                                                                                                                                                                  | 0.701                                                                                                                                                                                                                                                                                         |
| $28608\pm215$         | $-75 \pm 102$                                                  | $-125 \pm 97$                                                                                                                | $-1256\pm305$                                                                                                                                                                    | $-246 \pm 77$                                                                                                                                                                  | 0.914                                                                                                                                                                                                                                                                                         |
| $4900\pm776$          | $670\pm369$                                                    | $-224 \pm 353$                                                                                                               | $-1128 \pm 1104$                                                                                                                                                                 | $379\pm280$                                                                                                                                                                    | 0.742                                                                                                                                                                                                                                                                                         |
|                       | $y_0 (cm^{-1})$ $32278 \pm 314$ $28608 \pm 215$ $4900 \pm 776$ | $y_0$ (cm <sup>-1</sup> ) $a_{SA}$ $32278 \pm 314$ $-193 \pm 149$ $28608 \pm 215$ $-75 \pm 102$ $4900 \pm 776$ $670 \pm 369$ | $y_0$ (cm <sup>-1</sup> ) $a_{SA}$ $b_{SB}$ $32278 \pm 314$ $-193 \pm 149$ $-82 \pm 143$ $28608 \pm 215$ $-75 \pm 102$ $-125 \pm 97$ $4900 \pm 776$ $670 \pm 369$ $-224 \pm 353$ | $y_0$ (cm <sup>-1</sup> ) $a_{SA}$ $b_{SB}$ $c_{SP}$ 32278 ± 314-193 ± 149-82 ± 143-612 ± 44728608 ± 215-75 ± 102-125 ± 97-1256 ± 3054900 ± 776670 ± 369-224 ± 353-1128 ± 1104 | $y_0$ (cm <sup>-1</sup> ) $a_{SA}$ $b_{SB}$ $c_{SP}$ $d_{SdP}$ $32278 \pm 314$ $-193 \pm 149$ $-82 \pm 143$ $-612 \pm 447$ $-48 \pm 113$ $28608 \pm 215$ $-75 \pm 102$ $-125 \pm 97$ $-1256 \pm 305$ $-246 \pm 77$ $4900 \pm 776$ $670 \pm 369$ $-224 \pm 353$ $-1128 \pm 1104$ $379 \pm 280$ |